范文大全

比的意义教案,比的意义教案

作者: 猫宁 发布日期:2024年03月09日

比的意义教案篇1

   教学内容:教科书第36页例1、“试一试”“练一练”,练习六第1-5题。

    教学目标:

  1.使同学初步理解单位“1”和分数单位的含义,经历分数意义的概括过程,进一步理解分数的意义。

  2.使同学在说明所表示的意义的过程中,进一步培养分析、综合与笼统、概括的能力,感受分数与生活的联系,增强数学学习的信心。

  教学重点:正确理解分数的意义和单位“1”的含义。

  教学难点:引导同学自主概括出分数的意义。

   教学对策:通过创设互相协作、积极探索的学习情境,组织同学动手操作、动脑考虑,自主探索,教师适时点拨,引导和启迪同学考虑。

    教学准备:教学光盘

    教学过程:

   一、揭题。

    二、新授。

  1.教学例1

  出示例1中的一组图

  请大家根据每幅图的意思,用分数表示每个图中的涂色局部。写出分数后,再想一想:每个分数各表示什么?在小组内交流。

  同学汇报所填写的分数,你认为这些图中分别是把什么平均分的?

  一个饼可以称为一个物体,一个长方形是一个图形,“1米”是一个计量单位,而左起第四个图形是把6个圆看成一个整体。

  左起第四个图形与前三个图形有什么不同?

  一个物体,一个计量单位或由许多物体组成的一个整体,都可以用自然数1来表示,通常我们把它叫做单位“1”。

  (1)在这几个图形中,分别把什么看成单位“1”的?

  (2)分别把单位“1”平均分成了几份?用分数表示这样的几份?

  (3)从这些例子看,怎样的数叫作分数?

  拿12根小棒自已发明一个分数

  说说你是怎么做的?

  假如老师要表示6根小棒可以用什么分数表示?

  2. 教学“试一试”

  同学在小组内说说上面每个分数的分数单位,以和各有多少个这样的分数单位。

  反馈交流时,教师请同学同桌两人合作回答,一人说分数,另一人说分数单位。

  3.完成“练一练”

  各图中的`涂色局部怎样用分数表示?请大家在书上填空。说说是怎样想的。

  每个分数的分数单位是多少?各有几个这样的分数单位?

    三、巩固

  1.做练习六的第1题

  每个分数的分母与分数单位有什么联系?

  2.做练习六的第2题

  先让同学在每个图里涂色表示三分之二,再说说是怎样涂的、怎样想的。

  同样是三分之二,为什么涂色桃子的个数不同?

  3.做练习六的第3题

  照样子说说题中每个分数的意义。

  在研究分数时,把哪个数量平均分成若干份,这样的数量就是单位“1

  4. 做练习六的第4题

  先让同学看图指一指直线上从几到几的这一段可以表示单位“1”。再让同学中直线上的点表示各分数。然后让同学说说各是怎样想的。

  5. 做练习六的第5题

  同学独立完成后,说说所填写的两个分数有什么不同。

  这两个分数都是把12枝铅笔看作单位“1”平均分后得到的;第一个分数要把单位1平均分成12份,第二个分数要把单位1平均分成2份。

   四、总结。这节课学习了哪些内容?

  教学反思:分数意义的归纳鼓励同学用自身的语言说出,切实做到了淡化概念,注重实质。使同学建构的过程得以凸显,内化的知识得到外显。特别是“若干”一词,扣得很有价值,让同学做到了真正理解,使同学在新情景中实现迁移,举一反三。

    授后小记

  早在三年级的时候同学已经初步认识了分数的意义,本课主要让同学弄清“单位‘1’”和分数单位的意义。

  1、一个物体、一个计量单位或由许多物体组成的一个整体,都可以看作单位“1”。

  2、将单位“1”平均分成若干份,表示这样一份的数叫做分数单位。

  同学的练习中,“‘一节课的时间是2/3小时’的分数意义”一题中把什么看作单位“1“个别同学仍有一定困难。

比的意义教案篇2

  1、理解并掌握比的意义,掌握比的读、写,认识比各部分名称。

  2、掌握求比值的方法,并能正确求出比的比值。

  3、理解比和除法、分数的关系。

  4、向学生渗透转化思想,培养学生抽象、概括能力。

  教学重点:

  理解比的意义,掌握求比值的方法。

  教学难点:

  理解比的意义,建立比的概念。

  课前准备:

  制作教学课件。

  一、复习铺垫,导入新课。

  1、口答:78= 135= =( )( ) =( )( )

  指名说出分数与除法的关系。

  2、师:在日常生产和生活中,常常需要把两个数量进行比较。比较的方法我们已经学过两种,即比较两个数量之间相差关系用减法;比较两个数量之间的倍数关系用除法。下面请大家看这个例子(出示P52的例如):一个镜框长5分米,宽3分米。谁能提出关于长和宽的倍数关系的问题?

  根据学生提出的问题板书:

  长是宽的几倍?53= 宽是长的几分之几?35=

  师:刚才,我们用除法来表示两个数或数量之间的关系,也就是两个数相除(板书:两个数相除),有时我们也把这样两个数量的关系换一种说法。这也就是我们今天这堂课要研究的问题比的意义。

  板书课题。

  二、教学新知,初步感知。

  1、揭示比的意义。

  师:例如,长是宽的 倍我们可以这样说,长和宽的比是5比3.(板书:长和宽的比是5比3)(学生跟着老师练说)那么,按照这种说法,宽是长的 还可以怎样说?同坐试着说,再指名说。(板书:宽和长的比是3比5)

  师:我们再来看一个例子(出示P52的又如,一辆汽车2小时行驶90千米)路程和时间的关系可以用速度(也就是每小时行多少千米)来表示。怎样列式?(学生回答,教师板书:902=45)谁能用比来表示路程和时间的关系?(板书:路程和时间的比是90比2)

  引导学生观察板书、归纳比的意义。提问:什么叫做比?(学生可通过或讨论、或看书得出比的意义,教师接着两个数相除后面板书:又叫做两个数的比。)

  练一练。

  (1)、有5个红球和8个白球,红球和白球个数的比是 比 ,白球和红球个数的比是 比 。

  (2)、 一个美术兴趣小组有男生15人, 女生8人, 男生和女生人数的比是 比 。男生和美术兴趣小组总人数的比是 比 。

  2、通过自学,掌握比各部分的名称和求比值的方法。

  (1)出示自学提纲:

  ①用数学方法如何写比,如何读呢?

  ②比的各部分的名称分别叫什么?

  ③比和除法、分数的关系各是什么?填入表中。

  ④比的后项为什么不能为零?

  (2)学生自学课本或分组讨论。

  (3)集体讨论第①个问题并板书:5:3 3:5 90:2

  师:比还有一种写法,你知道是怎样写的吗?(教学比的分数形式)

  在学生讨论的基础上教师叙述:两个数的`比还可以写成分数形式,例如:5:3也可以写成 ,仍读作5比3.请大家把3:5、90:2改写成分数形式。

  (4)集体讨论第②个问题并板书:

  (5)根据上面式子,指名说说比和除法、分数的关系及求比值的方法。

  在学生讨论的基础上出示下面关系表:

  名称 联系 区别

  比 前项 :比号 后项 比值 一种关系

  除法 被除数 除号 除数 商 一种运算

  分数 分子 分数线 分母 分数值 一种数

  指名说说,比的后项为什么不能是零?

  辨析:在亚洲女足锦标赛中, 中国女足健儿努力拚博,夺得了金牌,为祖国争得了荣誉,其中,中国队以1:0战胜了日本队,那么为什么这个比的后项可以是0呢?

  师说明:因为各类比赛中的比不是我们这节课学习的比,它只是一种计分形式,不是相除的关系。

  问:怎样求比值呢?

  学生回答后小结:求比值用比的前项除以后项。比值通常用分数表示,也可以用小数表示,有时也可能是整数。

  练习:求比值:4:5 0.8:0.4 :

  三、巩固练习,深化认识。

  1、完成P53练一练。

  2、完成练习十二第1题。

  3、完成练习十二第2题。

  四、综合练习,提高技能。

  1、口答:白兔的只数是黑兔的4倍,

  白兔只数与黑兔只数的比是( )

  黑兔只数与白兔只数的比是( )

  黑兔只数与总只数的比是()

  总只数只数与黑兔的比是()

  白兔只数与总只数的比是()

  总只数与白兔只数的比是()

  2、动脑筋根据题目中提供的信息,寻找合适的量,自己提出各种问题,并说说这些量之间的比

  小龙今年12岁,是六(1)班学生,该班共有45个学生,小龙爸爸今年39岁,在保险公司上班,每月工资1800元;小明妈妈每月工资1400元,她所在单位有职工28人。

  五、全课总结,释疑解惑。

  这节课,你学会了那些知识?还有哪些问题需要探讨的吗?

  六、作业:完成练习十二第3-5题。

比的意义教案篇3

  教学目标

  1.归纳整理四则运算的意义。

  2.归纳整理整数小数和分数计算法则的异同点,进一步总结计算时应遵循的一般规律。

  3.总结四则运算中的一些特殊情况。

  4.总结验算方法。

  教学重点

  整理四则运算的意义及法则。

  教学难点

  对四则运算算理本质规律的认识和理解。

  教学步骤

  一、复习旧知识,归纳知识结构。

  (一)四则运算的意义。【演示课件“四则运算的意义和法则”】

  1.举例说明四则运算的意义。

  根据下面算式,说一说它们表示的四则运算的意义。

  2+3 0.6-0.4 2×3 6÷2

  100-15 2×0.3 0.6÷0.2

  0.2+0.3 2×1.3

  2.观察图片。

  教师提问:看一看,整数、小数、分数的哪些意义相同?哪些意义有扩展?

  (加法、减法和除法意义相同,乘法意义在小数和分数中有所扩展。)

  3.你能用图示的形式表示出四则运算的意义之间的关系吗?

  (二)四则运算的法则。【继续演示课件“四则运算的意义和法则”】

  1.加法和减法的法则。

  (1)出示三道题,请分析错误原因并改正。

  错误分别是:数位没有对齐,小数点没有对齐,没有通分。

  (2)三条法则分别是怎样要求的?

  整数:相同数位对齐

  小数:小数点对齐

  分数:分母相同时才能直接相加减

  思考:三条法则的要求反映了一条什么样的共同的规律?

  (相同计数单位上的数才能相加或相减)

  2.乘法和除法的法则。

  (1)出示两道题:

  口述整数乘法和除法的计算法则。

  改编成小数乘除法计算:1.42×2.3 4.182÷1.23

  (要求:学生在整数计算的结果上确定小数点的位置)

  (2)教师提问。

  通过上面的计算,你发现小数乘法和除法与整数乘法和除法有什么相似的。地方?

  (小数乘除法都先按整数乘除法法则计算)

  有什么不同?

  (小数乘、除法还要在计算结果上确定小数点的位置。)

  (3)根据 ,说一说分数乘法和除法的法则。

  分数乘法和除法比较又有什么相似和不同?

  相似:分数除法要转化成分数乘法计算。

  不同:分数除法转化后乘的是除数的倒数。

  (三)练习。【继续演示课件“四则运算的意义和法则”】

  计算后说一说各题计算时需要注意什么?

  73.06-3.96 (差的百分位是0,可以不写)

  37.5×1.03 (积是三位小数)

  8.7÷0.03 (商是整数)

  3.13÷15 (得数保留三位小数)

  (要除到小数点后第四位)

  (要先通分)

  (四)法则中的特殊情况。【继续演示课件“四则运算的意义和法则”】

  请同学们根据a与0,a与1和a与a的运算分类。(a作除数时不等于0)

  分类如下:

  第一组:a+0=a a-0=a a×0=00÷a=0

  第二组:a×1=a a÷1=a

  第三组:a-a=0 a÷a=1

  (五)验算。【继续演示课件“四则运算的意义和法则”】

  1.根据四则运算的关系,完成下面等式。

  2.思考:怎样应用这些关系对加、减法或乘、除法的计算进行验算?

  (加法可用减法验算;减法可以用加法或减法验算;乘法可以用除法验算;除法可以用乘法或除法验算。)

  3.练习:先说出下面各算式的意义,再计算,并进行验算。

  4325+379 47.5-7.65 18.4×75

  84× 587.1÷0.57 ÷

  二、全课小结。

  这节课我们对四则运算的意义和法则进行了整理和复习,总结了在四则运算中的一些特殊情况及注意的问题,希望同学们在计算时一定要细心、认真,养成自觉验算的好习惯。

  三、随堂练习。

  1.根据43×78=3354,直接写出下面各题的得数。(复习积的变化规律和商不变的性质)

  43×0.78= 0.43×7.8=

  33.54÷0.78= 3354÷0.43=

  2.在○里填上“>”“<”或“=”。

  ○ 12× ○12÷3×2

  ÷ ○ 12÷ ○12÷2×3

  3.思考:7.6÷0.25的商与7.6×4的积相等吗?为什么?

  四、布置作业。

  计算下面各题,并且验算。

  1624÷56 -

  × 4.5×5.02

  五、板书设计

  四则运算的意义和法则

  数学教案-四则运算的意义和法则

比的意义教案篇4

  教材分析:

  教材首先指出百分数在生产、工作和生活中有广泛的作用,接着通过两个实例引出百分数的概念。教材这里强调的是两个数量的比,并联系比的概念说明,百分数也可以看作是以100为后项的一种比,所以又叫做百分率或百分比。最后教学百分数的写法。

  学情分析:

  学生对于百分数并不陌生,他们有的可能已经认识百分数,并且能够正确读出百分数,但大多数学生对百分数的意义的认识和理解还不十分准确,因此,教学中引导学生理解了百分数表示的是一个数量是另一个数量的百分之几,也就是百分率的含义尤为重要。

  教学目标:

  1.使学生了解百分数的意义,会正确读写百分数。

  2.指导学生在理解百分数也是表示两个量间的倍数关系的同时,认识事物间的相互联系及发展变化规律,培养学生分析、概括能力。

  教学重点:百分数的意义及读、写

  教学难点:分数与百分数的意义之间的联系和区别

  教具准备 课前查阅百分数的资料

  小黑板或投影

  教学过程:

  活动(一)复习准备

  1.在日常生活中,同学们会经常看到或听到这样一些数:(出示投影或小黑板)(1)在12届亚运会中

  各国金牌情况如下:中国占40.3%,韩国占18.5%,日本占17.4%,其它国家占

  23.8%。

  (2)五(三)班学生在期末考试中,85%的人获优秀成绩,15%的人成绩达标。

  2、谁知道这些数是什么数?你对百分数已经有了哪些了解?你还想了解什么?

  师:在生产、工作和生活中,进行调查统计、分析比较时,经常要用到百分数。这节课就来研究。

  活动(二)探究新课

  1某小学六年级的100名学生中有三好学生17人,五年级的200名学生中有三好学生30人。六年级三

  生占全年级的几分之几?五年级三好生占全年级的几分之几?17/100、3/20分别表示两个量之间的什么关系?(倍数关系)

  提问:根据所得的。数,你能一眼看出哪个年级三好生人数的比例高吗?你能直接比较它们的大小吗?为什么?(分子不同,分母也不同,不容易看出。)

  讨论:怎样做才容易比较这两个分数的大小呢?(通分,化成分母相同的分数。)根据什么?(分数的基本性质。)

  小结:像这样分母不同的分数进行比较时,一般要进行通分,使分母相同。尤其是在日常生活、生产、科研中,通常把分母化成是100的分数,这样便于比较。下面我们把这两个数变成分母是100的分数。

  思考:17/100和15/100都表示什么?(表示三好学生和总人数之间的倍数关系)

  2.练习。(出示投影或小)

  一个工厂从一批产品中抽出500件,经过检验

  板书:百分数的意义和写法。

  根据学生的回答板书:六年级三好生占全年级的17/100 五年级三好生占全年级的3/20

  板书17/100=17/100

  3/20=15/100

  490件合格。合格的比率是多少?思考并计算这批产品的合格率是多少?(490/500)改写成分母是100的分数是多少?(98/100)说说98/100表示什么?

  3.概括百分数的意义。

  师:通过以上的练习说一说17/100、15/100、98/100

  都表示什么?(表示一个数是另一个数的百分之几)

  提问:什么是百分数?百分数表示两个量之间什么关系?

  小结:表示一个数是另一个数的百分之几的数叫做百分数,百分数也就叫做百分率或百分比。

  提问:百分数表示两个数之间什么关系?(倍数关系。)应不应该有单位名称?

  4.学习百分数的读法和写法。

  提问:百分数和分数比,相同点和不同点是什么? 百分数应该用什么形式表示呢?

  (1)写法:写百分数时,通常不写成分数形式,而采用(%)表示。写百分数时,去掉分数线和分母,在分子后面添上百分号。

  (2)读法:读百分数时,只要把百分号看作分母是100,百分号前面的数看作分子,就可以和分数一样读了。 5.百分数与分数的联系和区别。

  活动(三)巩固练习

  1.第105页做一做, 2.第106页第1,2题, 3.(投影)判断:(1)分母是100的分数叫做百分数。

  (2) 27/100千米可以写成27%千米。(3)百分数的分母一定是100.(4)五(2)班45人,体育全部达标,达标率100%。

  4.填空:

  (1)一本书看了40%,表示( )占( )的40%。

  如果书是100页,看了( )页;书是 200页,看了( )页。

  (2)一条公路,修了25%,还剩 ( )%没修。

  (3)火车速度比汽车快25%,火车的速度是汽车的( )%。

  5.一个工厂十月份的产值相当于九月份的百分之一百零八,写出这个百分数。十月份的产值比九月份的多了还是少了?

  活动(四)课堂总结

  这节课我们学习了哪些知识?(百分数的意义、读法和写法。)你知道人们在日常生产和生活中都在什么时候用百分数吗?(在计算优秀率、合格率、体育达标率等方面。)师:百分数的应用十分广泛,所以希望同学们学好百分数并学会在实际中应用。

比的意义教案篇5

  1、 理解比例的意义,认识比例各部分名称,初步了解比和比例的区别;理解比例的基本性质。

  2、 能根据比例的意义和基本性质,正确判断两个比能否组成比例。

  3、 在自主探究、观察比较中,培养学生分析、概括能力和勇于探索的精神。

  4、 通过自主学习,让学生经经历探究的过程,体验成功的快乐。

    教学重、难点:

  重点:理解比例的意义和基本性质,能正确判断两个比能否组成比例。

  难点:自主探究比例的基本性质。

    教学准备:CAI课件

  一、复习、导入

  1、 谈话:同学们,我们已经学过了比的有关知识,说说你对比已经有了哪些了解?(生答:比的意义、各部分名称、基本性质等。)

  还记得怎样求比值吗?

  2、 课件显示:算出下面每组中两个比的比值

  ⑴ 3:5 18:30 ⑵ 0.4:0.2 1.8:0.9

  ⑶ 5/8:1/4 7.5:3 ⑷ 2:8 9:27

  [评析:从学生已有的知识经验入手,方便快捷,为新课做好准备。]

  二、认识比例的意义

  (一)认识意义

  1、 指名口答上题每组中两个比的比值,课件依次显示答案。

  师问:口算完了,你们有什么发现吗?(3组比值相等,1组不等)

  2、是啊,生活中确实有很多像这样的比值相等的例子,这种现象早就引起了人们的重视和研究。人们把比值相等的两个比用等号连起来,写成一种新的式子,如:3:5=18:30 。

  (课件显示:“3:5”与“18:30”先同时闪烁,接着两个比下面的比值隐去,再用等号连接)

  最后一组能用等号连接吗?为什么?(课件显示:最后一组数据隐去)

  数学中规定,像这样的一些式子就叫做比例。(板书:比例)

  [评析:通过口算求比值,发现有3组比值相等,1组不等,自然流畅地引出比例。有效的`课堂教学,就需要像这样做好已有经验与新知识的衔接。]

  3、今天这节课我们就一起来研究比例,你想研究哪些内容呢?

  (生答:想研究比例的意义,学比例有什么用?比例有什么特点……)

  5、 那好,我们就先来研究比例的意义,到底什么是比例呢?观察这些式子,你能说出什么叫比例吗?

  (根据学生的回答,教师抓住关键点板书:两个比 比值相等)

  同学们说的比例的意义都正确,不过数学中还可以说得更简洁些。

  课件显示:表示两个比相等的式子叫做比例。

  学生读一读,明确:有两个比,且比值相等,就能组成比例;反之,如果是比例,就一定有两个比,且比值相等。

  [评析:比例的意义其实是一种规定,学生只要搞清它“是什么”,而不需要知道“为什么”。本环节让学生先观察,再用自己的话说说什么是比例,学生都能说出比例意义的关键所在——两个比且比值相等,教师再精简语句,得出概念,注重了对学生语言概括能力的培养。在总结得出概念之后,教师没有嘎然而止,而是继续引导学生读一读,从正反两方面进一步认识比例,加深了学生对比例的内涵的理解。]

  (二)练习

  1、 出示例1 根据下表,先分别写出两次买练习本的钱数和本数的比,再判断这两个比能否组成比例。

  第一次

  第二次

  买练习本的钱数(元)

  1.2

  2

  买的本数

  3

  5

  (1)学生独立完成。

  (2)集体交流,明确:根据比例的意义可以判断两个比能否组成比例。

  2、完成练习纸第一题。

  一辆汽车上午4小时行驶了200千米,下午3小时行驶了150千米。

  ⑴分别写出上、下午行驶的路程和时间的比,这两个比能组成比例吗?为什么?

  ⑵分别写出上、下午行驶的路程的比和时间的比,这两个比能组成比例吗?为什么?

  [评析:这两道练习题既帮助学生巩固了比例的意义,学会根据比例的意义判断两个比能否组成比例;又让学生进一步体验到比例在生活中的应用。练习1其实是对例题的巧妙补充。]

  3、刚才我们先写出了比,然后再写出了比例,你觉得比和比例一样吗?有什么区别?

  (引导学生归纳出:比例由两个比组成,有四个数;比是一个比,有两个数)

  4、教学比例各部分的名称

  (1) 课件出示: 3 : 5

  前项 后项

  (2) 课件出示:3 : 5 = 18 : 30

  内项

  外项

  (3) 如果把比例写成分数的形式,你能指出它的内、外项吗?

  课件出示:3/5=18/30

  [评析:由练习题中先写比、再写比例,自然引出比和比例的的区别,再由比的各部分名称到比例的各部分名称,环环相扣、自然流畅、一气呵成。]

  5、小结、过渡:

  刚才我们已经研究了比例的意义、各部分名称,也知道了比例在生活中有很多的应用,接下来我们一起来研究比例是否也有什么规律或者性质,有兴趣吗?

  三、探究比例的基本性质

  1、课件先出示一组数:3、5、10、6

  再出示:运用这四个数,你能组成几个等式?(等号两边各两个数)

  2、 独立思考,并在作业本上写一写。

  学生组成的等式可能有:10÷5=6÷3 或10:5=6:3;3÷5=6÷10或3:5=6:10;3:6=5:10;5×6=3×10……

  根据学生回答板书: 3×10=5×6 3:5=6:10

  3:6=5:10

  5:3=10:6

  6:3=10:5

  3、 引导发现规律

  (1)还有不同的乘法算式吗?(没有,交换因数的位置还是一样)

  乘法算式只能写一个,比例却写了这么多,这些比例一样吗?(不同,因为比值各不相同)

  (2)那么,这些比例式中,有没有什么相同的特点或规律呢?仔细观察,你能发现比例的性质或规律吗?

  (3)学生先独立思考,再小组交流,探究规律。

  (板书:两个外项的积等于两个内项的积。)

  [评析:“运用这四个数,你能组成几个等式”,不同的学生写出的算式各不相同,也会有多少之别,这里充分发挥交流的作用,让每一个学生的思考都变成有用的教学资源。考虑到直接探究比例的基本性质学生会有困难,教师作了适当的引导,通过乘法算式和比例式的横向联系,让学生在变中寻不变,从而探究出性质。]

  4、验证:是不是任意一个比例都有这样的规律?

  ⑴课件显示复习题(4组),学生验证。

  ⑵学生任意写一个比例并验证。

  ⑶完整板书:在比例里,两个外项的积等于两个内项的积。这就是比例的基本性质。

  [评析:给学生提供大量的事例,要求他们多方面验证,从个别推广到一般,让学生学会科学地、实事求是地研究问题。]

  5、思考3/5=18/30是那些数的乘积相等。课件显示:交叉相乘。

  6、小结:刚才我们是怎样发现比例的基本性质的?(写了一些比例式,观察比较,发现规律,再验证)

  四、 综合练习

  完成练习纸2、3、4

  附练习纸:2、下面每组中的两个比能组成比例吗?把组成的比例写下来,并说说判断的理由。

  14 :21 和 6 :9

  1.4 :2 和 5 :10

  3、判断下面哪一个比能与 1/5:4组成比例。

  ①5:4 ② 20:1

  ③1:20 ④5:1/4

  4、在( )里填上合适的数。

  1.5:3=( ):4

  =

  12:( )=( ):5

  [评析:习题的安排旨在对比例的意义和基本性质进行进一步的巩固和应用,最后一道开放题答案不唯一,意在进一步让学生体验和感悟数学的“变”与“不变”的美妙与统一。]

  五、全课总结(略)

比的意义教案篇6

  教学内容:p86,加法和减法之间的关系。

  教学目的:1、理解加法,减法的意义。

  2、使学生明确加,减法之间的关系,进而使学生知道减法是加法的逆运算。

  3、学习了加地各部分间的`关系可以利用这一关系验算加法。

  4、培养学生概括能力。

  教学重点:理解加法,减法的意义。

  明确加、减法之间的关系。

  教学难点:理解减法是加法的逆运算。

  准备训练。

  说出算式各部分名称。

  40 + 30 = 70

  ( ) ( ) ( )

  - 40 = 30

  新授。

  出示课题加法和减法之间的关系

  出示例1

  (1)

  先让学生说出每幅线段图的表示的意思,列出算式

  40+30=70

  引导学生说出这是和与加数=关系。

  在算式下面写出加数+加数=和。

  从而引出加法的意义;

  说清图意,列式。

  引导学生把(2),(3)与(1)比较。

  谁是已知的,谁是未知的,已知,未知有什么变化。明确第(2)题是求第二加数,

  第(3)题是求第一加数。

  从中引导减法的意义。

  引导学生看书,理解减法是加法的逆运算

  着重引导学生想,为什么减法是加法的逆运算。

  将加法算式及各部分名称与减法算式各部分名称加以比较。

  得出:一个加数=和一另一个加数

  师:学习了加法各部分间的关系可以利用这一关系验算加法。

  试做:验算 743+257=1000,对不对?

  出示例2

  求□中的未知数

  □+6=13 根据一个加数等于和减另一个加数由生填,讲清怎样想的?就可以求出□中的数。

  再完成

  478+522=1000

  1000-478=522

  生完成后,回答怎样想的。

  三、小结:

  什么叫加法?什么叫减法?

  加法之间有怎样的关系?

  运用这一关系可以验算加法。

  四、巩固练习

  根据加,减法的关系,在下面算式的□里填数。

  (1) 237+69=306 (2)5002-3875=1127

  306-□ =237 3875+□=1127

  □-237=69 □-1127=3875

  □+378=1082 4657+□=7102

  □+265=930 1896+□=3024

  □+489=814 2743+□=5000

  坚式计算,并验算。

  3748+627 9134-514

  课后作业:

  1.根据560+430=990,写出两道减法算式。

  □-□=□

  2.根据500-240=260,写出一道加法算式和一道减法算式。

  □+□=□

  3.求□中的未知数

  589+□=1062 □+495=702

  298+□=594 □+324=500

比的意义教案篇7

  1、知识与技能:让学生理解方程的意义,知道什么是方程的解,什么是解方程,并弄清等式与方程的关系。

  2、过程与方法:会判断什么是方程,会解一步计算的方程,并会检验方程的解。

  3、情感态度与价值观:让学生养成良好的检查、验算的习惯,培养学生的分析能力、观察能力。

    教学重点:

  理解方程的意义,初步掌握解方程的‘方法和书写格式。

    教学难点:

  方程的解和解方程两个概念间的联系及区别,并会应用。

    教具准备:

  课件、白纸

  一、激情导入

  1、游戏引出课题:

  师:小朋友们,我们来做个游戏吧!老师来说一个词语,你们反这个词语反一反说出来,好吗?看谁反应快!

  父母的爱——爱父母;动物的画——画动物;

  节目的表演——表演节目;生命的感悟——感悟生命;朋友的理解——理解朋友;

  朋友的善待——善待朋友;亲人的召换——召换亲人;儿女的担忧——担忧儿女

  问题的答——答问题;方程的解——解方程;

  引出课题:板书“方程的解解方程”

  这节课我们来研究这里面的知识。

  二、讲解概念“等式、方程”

  1、找朋友:

  师:刚才我们玩的这个游戏中,找到了好几对文字上的朋友。

  下面,请你来帮这些式子或数字找找朋友,你愿意吗?

  生:愿意。

  ①、出示课件:同桌之间说一说;指名回答,根据学生回答再次出示课件。

  师:这几对好朋友都有什么特点呢?

  生:它们相等。(关键引出“相等”)

  师:除了把它们用线连起来,还可以用什么方法来表示它们之间是相等的呢?

  生:列成一个式子。

  学生口答列式,师边板书:80-20=60

  2+0.5=2.5

  30÷15=2

  30×2=60

  师:像这样用等号连接起来的,表示左右两边相等的式子,我们把它们取名叫等式。

  师:你能举例说几个等式吗?

  ②、引出方程:

  师:那剩下的几个它们找不到朋友,心里不太高兴,你能把它们也连连线写成一个等式吗?

  生:能。

  学生口答并板书,如:x+3=9

  300-b=250

  3a=18

  师:我们又找到了3对朋友,它们也是等式。那这三个等式跟刚才的四个等式有哪些相同和不同的地方吗?

  生:它们有未知数x、a、b。

  师:像这样含有未知数的等式,我们给它取名叫方程。

  你能举例说几个方程吗?

  2、等式与方程的关系:

  师:那等式和方程之间到底是什么关系呢?

  你能用一种直观形象的方法来表示它们之间的关系吗?

  你可以在纸上写一写、画一画,用自己喜欢的方式来表示,四人小组讨论一下。

  指名回答。出示课件并板书。

  师小结:方程属于等式,里面含有未知数,是一种特殊的等式,但等式不一定是方程。

  3、判断练习:

  师:我们有了方程和等式的知识,当遇到一个式子,要判断它是不是方程时,应该怎么想?

  生:先看它是不是等式,如果是等式,再看它有没有未知数。如果它有未知数,就是方程;如果没有未知数,就不是方程,而是一般的等式。

  师小结:一必须是等式,二必须含有未知数。

  师出示课件中的练习:下列哪些是方程,哪些不是方程?

  ①、下面哪些是方程,哪些不是方程:

  35-b=1284÷12=7

  5x-32

  450x=90069+a

  ②、含有未知数的算式叫做方程。

  ③、方程一定是等式;等式一定是方程。

  ④、35+x=76既是等式,也是方程。

  ⑤、30+20=10+40是等式,但不是方程。

  ⑥、y=0不是方程。

  ⑦、x=20是方程30+x=50的解。

比的意义教案篇8

  1. 使学生结合实例,理解比的意义,知道比的前项和后项,会正确地读、写两个数的比,会求比值。了解比和分数、除法之间的联系,会把比改写成分数的形式。

  2. 在解决实际问题的过程中,了解比在日常生活中的广泛应用,体会数学与生活的联系,培养对数学学习的兴趣。

  理解比的意义,比和分数、除法之间的联系。

  教学过程

  一、 创设问题情境,引入比

  电脑出示三幅长方形的画(标出每一幅的长和宽)。

  谈话:这里有三幅不同形状的画,你们觉得哪幅画的形状看起来最舒服、最美观?(学生都认为第二幅比较美观)三幅画画的都是美丽的海滨,为什么同学们都认为第二幅比较美观呢?(第一幅和第三幅画要么太长,要么太窄,长和宽的比例不合适)这三幅画长和宽的长度不同,所以给人的感觉就不一样,你知道可以怎样来表示每幅画长和宽的关系吗?(第一幅画长是宽的2倍,宽是长的1/2……)

  提问:还可以怎样表示它们的关系?

  过渡:是的,我们还可以用比来表示每一幅画长和宽的关系。今天这节课我们就来认识比。

  二、 自主活动,认识比

  1. 用比表示两个同类量的相除关系。

  (1)讲解:像第一幅画长是宽的2倍,也可以表示为:长和宽的比是2比1,记作2 ∶ 1,“∶”是比号。宽是长的1/2也可以表示为:宽和长的比是1 ∶ 2.你能说一说怎样用比表示第二幅画、第三幅画长和宽的关系吗?

  学生分别用比表示另外两幅画的长和宽的关系。

  (2)出示一瓶××牌洗洁液,用实物投影放大洗洁液的使用说明。

  谈话:在日常生活中,我们经常用比表示两个数量之间的关系。如:这瓶洗洁液,上面的使用说明就是用比来表示的。

  指说明中1∶4的图,提问:这里浅色部分和深色部分分别表示什么?你知道1 ∶ 4是表示什么意思吗?(表示洗洁液和水的比是1 ∶ 4,就是1份洗洁液要加4份水的意思,洗洁液的体积是水的1/4)

  再问:那么水和洗洁液的比是几比几?表示什么意思?

  师生共同讨论1 ∶ 8和1 ∶ 1的含义。

  2. 用比表示两个不同类量的相除关系。

  谈话:通过刚才的学习,同学们对比有了初步的认识。下面我们再看一幅图(出示图:一堆梨,下面标有2千克,共3元;一堆苹果,下面标有3千克,共6元)。

  提问:根据图中的信息,你知道梨的单价是多少元吗?

  根据学生回答,板书:单价=总价÷数量。

  讲解:像这样总价和数量之间的关系也可以用比来表示,梨的总价和数量的比是3 ∶ 2,表示总价除以数量。

  提问:你能用比来表示苹果的总价和数量之间的关系吗?

  这里的6 ∶ 3表示什么意思?(表示总价除以数量)

  3. 理解比的意义。

  谈话:根据上面的例子,你能说一说什么叫两个数的比吗?

  小结:两个数相除又叫做两个数的比。

  4. 自学课本。

  提问:关于比,你还想了解哪些知识?下面请同学们带着这些问题自学课本第53页,再和小组里的同学互相说一说,你知道了什么?

  反馈:通过自学,你又了解了哪些知识?

  师生共同讨论下面的问题:

  (1)比由哪几部分组成,分别叫什么?比的后项能为0吗?为什么?

  (2)什么叫比值?怎样求比的比值?

  (3)比和除法、分数有什么联系?

  (4)比还可以写成怎样的形式?

  小结:(略)

  三、 巩固练习,深化理解

  1. 完成“练一练”第1、2题。

  学生完成填空后,让学生说一说每个比所表示的意思。

  2. 完成“练一练”第3题。

  学生改写后,再读一读,并分别指出每一个比的`前项和后项。

  3. 小强和爸爸身高的比。

  出示:小强的身高是1米,他爸爸的身高是 173厘米。写出小强和他爸爸身高的比。

  学生练习后,组织交流,并说一说为什么小强和他爸爸身高的比不能写成1 ∶ 173.

  4. 糖水的甜度。

  出示:两杯糖水,并标出糖和水质量的比,第一杯是1 ∶ 20,第二杯是1 ∶ 25.

  提问:你知道哪杯水甜吗?为什么?

  出示:第三杯中糖4克,水100克。

  谈话:这杯糖水和刚才的哪一杯一样甜?先想一想,再和同桌说一说你是怎样比较的。

  提问:根据第一杯糖和水质量的比是1 ∶ 20,你能说出第一杯中糖和糖水质量的比吗?

  四、 课堂总结

  提问:今天我们共同学习了什么?你们有什么收获?还有什么问题吗?

  五、 课外延伸

  出示课始的三幅画,谈话:还记得我们一开始出示的三幅画吗?为什么大家都认为第二幅比较美观呢?你能算出这幅画长和宽的比值吗?(学生算出长和宽的比值大约是0.618)其实呀,这里面还藏着许多奥秘呢,同学们想了解吗?

  课件播放短片,介绍黄金比。

  谈话:其实,在我们的身边就有很多的黄金比,如我们经常见到的长方形纸的长和宽的比,等等。同学们如果有兴趣,可以在课后再去研究。

比的意义教案篇9

  1.使学生比较系统地、牢固地掌握有关整数、分数、小数、百分数的基础知识。

  2.进一步弄清概念间的联系与区别。

  使学生比较系统地、牢固地掌握整数、小数、分数、百分数的基础知识。

    教学难点

  弄清概念间的联系和区别。

    教学步骤

  一、铺垫孕伏。

  1.填空【演示课件“数的意义”】

  0、1、79、 、0.25、0.6、100、 、 、 、85%、30、90%、7、8、2.35……

  学生分类填数:

  2.导入:上题同学们填得很正确,这就是我们在小学阶段学习的几种数:整数、分数、小数、百分数。这节课我们就把这几种数的意义和有关知识进行一下整理和复习。(板书课题:数的意义)

  二、探究新知【继续演示课件“数的意义”】

  (一)整数

  1.小组讨论。

  2.师生总结。

  自然数:0、1、2、3、……

  自然数是整数。

  教师说明:在小学只学大于0和等于0的整数,进入初中就要学习小于0的整数。

  想一想:自然数有什么特征?

  总结:最小的自然数是0,没有最大的自然数,说明自然数的个数是无限的。

  (二)分数。

  1.引导学生思考:

  ①把单位“1”平均分成若干份,表示这样的一份或几份的数叫什么数?(分数)

  表示其中一份的数是这个分数的什么?(分数单位)

  ②在整数范围内能计算2÷9吗?有了分数以后能计算吗?为什么?

  2.填空练习。

  ①把单位“1”平均分成4份,表示这样的3份是 ;把3平均分成4份,每一份是 。

  ② 的分数单位是( ),它至少再添上( )个这样的单位就成了整数。

  3.教师说明:两个数相除,它们的商可以用分数表示。

  即:

  4.教师提问:同学们想一想,分数可以分为哪几类?

  谁能说出真、假分数的意义及有关知识?(举例说明)

  ①分子比分母小的分数叫做真分数。真分数小于1.

  ②分子比分母大或者分子和分母相等的。分数,叫做假分数。假分数大于1或者等于1.

  ③分子是分母的倍数的假分数可以化成整数。

  ④分子不是分母倍数的假分数可以化成带分数。

  ⑤反之,整数和带分数也可以化成假分数。

  教师板书:假分数

  教师说明:假分数、带分数、整数可以相互转化。带分数是由整数和真分数合成的数,它是分子不是分母倍数的假分数的另一种形式。

  (三)小数。

  教师引导:从分数的意义联想一下,小数的意义又是什么呢?还学了哪些有关的知识呢?你能举例说明吗?

    教师板书:

  教师说明:整数和小数都是按十进制计数法写出的数,其中个、十、百……以及十分之一、百分之—……都是计数单位。各个计数单位所占的位置,叫做数位。数位是按一定的顺序排列的。

  (四)百分数。

  教师提问:你们还记得百分数的意义吗?

  教师板书:百分数(百分率或百分比):用%表示。

  三、全课小结。

  这节课我们整理和复习了数的意义及有关知识,并形成了知识网络,对数概念间的联系与区别有了更清楚的认识。

  四、随堂练习【继续演示课件“数的意义”】

  1.填空。

  (1)把根3米长的铁丝平均分成7段,每一段长是这根铁丝的 ,每段长米 。

  (2)分数单位是 的最大真分数是 ,它至少再添上( )个这样的分数单位就成了假分数

比的意义教案篇10

    教学目标

  1.使学生理解分数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算。

  2.掌握分数除以整数的计算法则,并能正确的进行计算。

  3.培养学生分析能力、知识的迁移能力和语言表达能力。

    教学重点

  正确归纳出分数除以整数的`计算法则,并能正确的进行计算。

    教学过程

  一、复习引新

  (一)说出下面各数的倒数。

  0.3 6

  (二)已知126×45=5670,直接说出5670÷45和5670÷126的得数,再说说你是怎样想的,根据是什么。(学生回答后教师总结:根据整数除法的意义,不用计算就能知道这两题的结果,谁还记得整数除法的意义是什么?已知两个因数的积与其中一个因数,求另一个因数的运算。)

  (三)引新:同学们想不想知道分数除法的意义吗?分数除法如何计算呢?这节课我们就一起来

  学习

  分数除法。(板书课题:分数除法的意义和计算法则)

  二、新授教学

  (一)。教学分数除法的意义(演示课件:分数除法的意义)

  1.每人吃半块月饼,4个人一共吃多少块月饼?

  教师提问:半块月饼用分数怎么表示?求4个人一共吃多少块月饼就是求几个?求4个是多少怎样列算式?()

  2.两块月饼,平均分给4人,每人分得多少块?怎样列式?

  列式:2÷4

  3.两块月饼,分给每人半块,可以分给几个人?

  列式:

  教师提问:说一说结果是多少?你是如何得出结果的?

  4.组织学生讨论:分数除法的意义。

  总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

  5.练习反馈。

  1.出示例1.把米铁丝平均分成2段,每段长多少米(演示课件:分数除以整数)

  (1)求每段长多少米怎样列算式?

  (2)以小组为单位讨论一下得多少呢?

  米平均分成2段就是要把6个米平均分成2份,每份是3个米是米。

  (3)教师板书整理。

  2.教师质疑:如果把米铁丝平均分成3段、6段怎样计算?

  也可以这样想:把米铁丝平均分成3段,就是求米的是多少,列式是:

  把米铁丝平均分成6段,就是求米的是多少,列式是:

  3.教师继续质疑:如果把米铁丝平均分成4段每段长多少米?怎样计算?

  为什么采用转化成分数乘法这种方法比较好呢?

  组织学生观察在转变中,什么变了,什么没变?讨论分数除以整数的计算法则。

  4.学生边概括教师边板书:分数除以整数(0除外)等于分数乘以这个整数的倒数。

  三、巩固练习

  (一)计算下面各题。

  学生独立完成,教师巡视,进行个别辅导。

  (二)求未知数

  1.2.

  (三)判断。

  1.分数除法的意义与整数除法的意义相同。()

  2.已知两个分数的积与其中一个分数,求另一个分数,用除法解答。()

  (四)解答下面各题。

  1.把平均分成4份,每份是多少?

  2.什么数乘以6等于?

  3.一个正方形的周长是米,它的边长是多少米?

  四、课堂总结

  这节课我们学习了哪些知识?分数除法的意义是什么?分数除以整数的计算法则是什么?还有什么问题?

  五、课后作业

  (二)解下列方程。

  六、板书设计

  分数除法

比的意义教案篇11

  教学内容:

  教材第48-49页的内容及相应的“做一做”。

  1、理解比的意义,掌握比的读、写及各部分的名称。

  2、理解分数、除法和比三者之间的联系和区别。掌握求比值和比的未知项的方法。

  理解比的意义,求比值。

  理解比和分数、除法之间的关系。

  一、创设情境

  1、播放“神舟”五号顺利升空课件。

  播报:20xx年10月15日,我国第一艘载人飞船“神舟”五号顺利升空。在太空中,执行此次任务的航天员杨利伟在飞船里向人们展示了联合国旗和中华人民共和国国旗。(出示两面国旗:两面国旗都是长15cm,宽10cm。)

  2、提问:我们可以怎样表示它们长和宽的关系呢?

  (1)用比多比少的方法来表示:长比宽多5cm,宽比长少5cm。

  (2)用倍数关系来表示:长是宽的3/2,宽是长的2/3.

  3、导入新课:在描述两个量之间的关系时,我们除了可以用“多多少、少多少、几倍、几分之几”来描述外,还可以用“比”来描述两个量之间的关系,今天我们就来学习比的知识。(板书课题:比的意义)

  二、自学互动,适时点拨

  【活动一】比的意义

  学习方式:独立自学、汇报交流

  学习任务

  1、同类量的比。

  (1)启发:除了用已经学过的这些方法来表示长和宽的关系外,我们还可以怎样表示这两个数量之间的关系?

  (2)自学课本第48页的内容。

  (3)长和宽的比是15比10,宽和长的比10比15.

  (4)指出:不论是长和宽的比,还是宽和长的比,都是两个长度的`比,相比的两个量是同类的量,这样的两个比我们称为同类的比。

  2、不同类量的比。

  (1)出示数据,列式求飞船的速度:42252÷90.

  (2)用比来表示路程和时间的关系。

  提问:路程和时间的关系能不能用比来表示呢?应该怎样表示呢?(路程和时间的比是42252比90)

  (3)提问:路程和时间是不是同类的量?

  (4)指出:两个同类量的比表示这两个量之间的倍数关系,两个不同类量的比可以表示一个新的量。如“路程比时间”又表示速度。

  3、概括比的意义:通过两数相除来表示两个数量之间的关系,它们都可以用比来表示,所以“两个数相除又叫做两个数的比”。

  【活动二】比的读写方法和各部分的名称

  学习任务

  1、自学课本第49页,思考:几比几怎样写、怎样读?比的各部分名称是什么?

  2、汇报交流:15 : 10 =15÷10 =3/2

  前项 比号 后项 比值

  3、比值。

  (1)什么是比值?怎么求比值?

  (2)比值可以怎样表示?(分数、小数、整数)

  (3)讨论:比值和比有什么联系和区别?

  【活动三】比与除法、分数的关系

  学习方式:小组讨论、汇报交流

  1、提问:比的前项、后项和比值分别相当于除法算式和分数中的什么?

  区别:除法是一种运算,分数是一种数,比表示两个数的关系。

  2、提问:比的后项可以是0吗?为什么?(比的后项不能为0,0没有意义。)

  三、达标测评

  1、完成课本第49页的“做一做”,集体订正。

  2、完成第52页练习十一的第1题。

  四、课堂小结

  这节课我们一起研究了比,回顾一下你有什么收获。

比的意义教案篇12

  1、情感态度与价值观:增强学生民族自豪感和培养学生学习的积极性。

  2、知识与技能:使学生通过观察、测量了解小数是如何产生的。使学生理解小数的意义,掌握小数的计数单位及相邻两个单位之间的进率。

  3、过程与方法:培养学生观察、抽象、概括及自主合作探究的能力。

  教学重点理解小数的意义

  教学难点掌握小数与分数的关系,深刻理解小数的意义。

  教法自主探索、合作学习

  教学准备多媒体课件、卡片、米尺

  教学课时1课时

    一、旧知复习

    二、生活中的小数

  1、小数的产生

  2、请同学们利用学具盒中的米尺分组测量课桌、书本、黑板的长与宽。

  小结:从日常生活和测量中,往往得不到整数的结果,除了可以用分数的形式表示以外,还可以用另外一种形式小数来表示。分数与小数之间有什么联系呢?带着这个问题我们共同来研究小数的意义。

    三、探究新知

  探索一:一位小数的意义

  把1米平均分成10份,每一份在尺子上是多少?写成分数是多少米?写成小数呢?

  小结:分母是10的’分数,可以写成一位小数

  板书:一位小数表示十分之几

  探索二:二位小数的意义

  还记得1米等于多少厘米吗?根据这个知识,结合刚才一位小数的学习,再利用米尺图,以小组为单位对下面的三道小题进行探究学

  小结:分母是100的分数,可以写成两位小数。

  板书:二位小数表示百分之几

  探索三:三位小数的意义

  如果把1米的尺子平均分成1000份,其中的一份或几份的数怎么用分数表示?又怎么用小数表示?你能举例说明你的表示方法吗?

  小结:分母是1000的分数,可以写成三位小数

  板书:三位小数表示千分之几

  总结:

  ①分母是10、100、1000 …的分数,可以用小数表示。这就是小数的意义。

  ②把1米看成一个整体,把一个整体平均分成10份、100份、1000份…这样的一份或几份可以用分母是10、100、1000…的分数来表示,也就可以用小数来表示。

  探索四:小数的计数单位及进率

  小数的计数单位是十分之一、百分之一、千分之一。用小数写作0。1、0。01、0。001

  那么相邻两个单位间的进率是多少?

  板书:每相邻两个计数单位之间的进率是10

    四、练习达标

  1、把下面各图中涂色的部分用分数和小数表示分数和小数表示出来。(课本P33页“做一做”)

  2、判断题

  (1)0.1、0.01、0.001…是小数的计数单位。

  (2)十分之一、百分之一、千分之一…是小数的计数单位

  (3)仿照整数的写法,写在整数个位的后面,用圆点隔开,用来表示十分之一、百分之一、千分之一…的数,叫做小数。

  3.填空

  0.8里面有个0.1;0.008里面有8个;

  0.32里面有32个;6个是0.6;

  0.5表示把整体;平均分成份,取其中的份。

  0.24表示把整体;平均分成份,取其中的份。

  板书设计

  《小数的意义》

  一位小数表示十分之几

  二位小数表示百分之几

  三位小数表示千分之几

  每相邻两个计数单位之间的进率是10

  课后反思

比的意义教案篇13

  教材位置

  人教版九义教材六年制小学第八册教科书第111——112页的例1及相应“做一做”和练习二十六第1题。

  教学目的

  1、使学生理解小数加法的意义,初步掌握计算法则,能够较熟练地笔算小数加法。

  2、培养学生的迁移、类推能力。

  3、渗透数学“来源于生活,又运用于生活”。

  教具准备

  多媒体课件。

  学具准备

  草稿纸若干

  相同数位对齐

  小数点对齐

  教学方法

  探究式学习法

  学情分析

  学生已对多位数笔算方法有较深的认识及熟练准确的计算,对小数的数位也在上一章节有明确的认识,只是在“怎样才能尽快地使小数的相同数位对齐”这一观念上需要摸索、比较,得到明确的认识,形成计算小数加法的能力。

  学生在整数加法的计算法则中已有相当的了解,并对其重要性已有较深的认识。

  整数加法笔算时是先将个位对齐以达到相同数位对齐的`目的,小数则应抓住小数的特征,将小数点对齐来达到相同数位对齐的要求。

  学生在整数加法的基础上,通过类比推理,将知识迁移,很容易理解。

  一、复习。

  1、谁的竖式最漂亮,计算更准确。

  4235+5478 3251+438

  7621+37543 4320+317

  小组内完成后,讨论下列问题。

  1列竖式时要注意什么?怎样列竖式更快捷?

  2计算时要注意什么?

  2、整数加法的意义是什么?它的计算法则是什么?

  二、激趣导入。

  1、提问:夏天到了,你最喜欢吃什么水果?

  2、听故事,做数学。

  明明和妈妈到自选商场买西瓜。妈妈选了一个小一点的瓜,在电子称上一称,是3735克。明明选了一个大一点,有4075克。你能算出他们一共买了多少西瓜吗?

  3、抽一生列式板演,全班齐练。

  4、继续听,继续算。

  后来,他们到收银台,可收银台阿姨的称量数据却发生了变化,上面全是以“千克”为单位的,你能说出他们西瓜的重量吗?

  你还会求出他们一共重多少千克吗?

  5、揭示课题:

  小数加法的意义和计算法则

  三、新授。

  1、小数加法的意义。

  同整数加法一样,都是把两个数合并成一个数的运算。

  2、小数加法的计算法则。

  刚才有的同学说会,现在各小组一齐完成竖式计算并讨论以下问题:

  (1)小数与整数比较,有什么特征?

  复习整数加法的计算,让学生进一步巩固相同数位对齐的认识。

  为小数加法的意义和法则的类推作理论铺垫。

  设问起疑,引起学生的兴趣,提高学生的注意力。

  体现数学来源于生活,生活中到处存在数学问题。

  进一步复习巩固单位换算的知识,为引出课题作准备。

  类比推理的运用,训练学生知识迁移能力。

  (2)列竖式时注意:整数先将个位对齐,小数应先将什么对齐,以达到相同数位对齐的

  目的?

  (3)小数计算后,结果末尾是“0”应怎么办?它的理论依据是什么?

  3、指导看书P111.

  4、试练。

  完成P111做一做并回答问题。

  四、延伸拓展。

  1、你会用两种方法计算吗?

  1元8角7分+3角2分

  7角6分+3元4角4分

  2、听故事,列算式:

  小玲到商场买来3米2分米绳子,付了1元9角2分钱,后来发现不够,小丽又去买了2.8米,付了1元6角8分。一共买了多少绳子?付了多少钱?

  五、巩固训练。

  4235+5748 37251+438

  4.235+5.748 3.7251+4.38

  42.35+5.748 37.251+4.38

  4.235+57.48 372.51+4.38

  六、板书设计。

  3 7 3 5克 3. 7 3 5千克

  + 4 0 7 5克 + 4. 0 7 5千克

  7 8 1 07. 8 1 0千克

  7810克=7.81千克 3.735+4.075=7.81(千克)

  在完成小数的意义的推理以后,让学生思考小数加法法则向整数加法法则的类推。

  初步学会对加法法则的运用。

  加深学生对整数加法和小数加法法则的理解及综合运用知识的能力。

  训练学生分类整理知识的能力,体现出运用知识解决生活中实际问题的观念。

  加深对计算法则的理解,能运用法则准确计算。

比的意义教案篇14

  1.使学生理解正、反比例的意义,能够初步判断两种相关联的量是否成比例,成什么比例。

  2.通过观察、比较、归纳,提高学生综合概括推理的能力。

  3.渗透辩证唯物主义的观点,进行运用变化观点的启蒙教育。

  教学重难点

  理解正反比例的`意义,掌握正反比例的变化的规律。

  一、导入新课

  (一)昨天老师买了一些苹果,吃了一部分,你能想到什么?

  (二)教师提问

  1.你为什么马上能想到还剩多少呢?

  2.是不是因为吃了的和剩下的是两种相关联的量?

  教师板书:两种相关联的量

  (三)教师谈话

  在实际生活中两种相关的量是很多的,例如总价和单价是两种相关联的量,总价和

  数量也是两种相关联的量。你还能举出一些例子吗?

  (一)成正比例的量

  例1.一列火车行驶的时间和所行的路程如下表:

  时间(时):路程(千米)

  1 :90

  2 :180

  3 :270

  4 :360

  5 :450

  6 :540

  7 :630

  8 :720

  1.写出路程和时间的比并计算比值。

  (1) 2表示什么?180呢?比值呢?

  (2) 这个比值表示什么意义?

  (3) 360比5可以吗?为什么?

  2.思考

  (1)180千米对应的时间是多少?4小时对应的路程又是多少?

  (2)在这一组题中上边的一列数表示什么?下边一列数表示什么?所求出的比值呢?

  教师板书:时间、路程、速度

  (3)速度是怎样得到的?

  教师板书:

  (4)路程比时间得到了速度,速度也就是比值,比值相当于除法中的什么?

  (5)在这组题中谁与谁是两种相关联的量?它们是如何相关联的?举例说明变化规律。

  3.小结:有什么规律?

    热门推荐

    猜您感兴趣

    相关文章

    上一篇:护理实习总结报告精选,护理专业见习报告
    下一篇:有梦想点亮未来演讲稿,点亮未来
    

    Copyright © 2022-2024 www.juzici.com

    All right reserved. 猫宁早安 版权所有

    鲁ICP备15008254号

    返回顶部重选