范文大全

指数函数教案范例,指数函数教案

作者: 猫宁 发布日期:2024年03月05日

指数函数教案范例篇1

  教学是教师的教和学生的学所组成的一种人类特有的人才培养活动。通过这种活动,教师有目的、有计划、有组织地引导学生学习和掌握文化科学知识和技能,促进学生素质提高,使他们成为社会所需要的人。下面小编给大家整理的高二数学教学计划范文,但愿对你有借鉴作用!

  高二数学教学计划范文1一、基本状况分析

  任教153班与154班两个班,其中153班是文化班有男生51人,_22人;154班是美术班有男生23人,_21人,并且有音乐生8人。两个班基础差,学习数学的兴趣都不高。

  二、指导思想

  准确把握《教学大纲》和《考试大纲》的各项基本要求,立足于基础知识和基本技能的教学,注重渗透数学思想和方法。针对学生实际,不断研究数学教学,改善教法,指导学法,奠定立足社会所需要的必备的基础知识、基本技能和基本潜力,着力于培养学生的创新精神,运用数学的意识和潜力,奠定他们终身学习的基础。

  三、教学推荐

  1、深入钻研教材。

  以教材为核心,深入研究教材中章节知识的内外结构,熟练把握知识的逻辑体系,细致领悟教材改革的精髓,逐步明确教材对教学形式、资料和教学目标的影响。

  2、准确把握新大纲。

  新大纲修改了部分资料的教学要求层次,准确把握新大纲对知识点的基本要求,防止自觉不自觉地对教材加深加宽。同时,在整体上,要重视数学应用;重视数学思想方法的渗透。如增加阅读材料(开阔学生的视野),以拓宽知识的广度来求得知识的深度。

  3、树立以学生为主体的教育观念。

  学生的发展是课程实施的出发点和归宿,教师务必面向全体学生因材施教,以学生为主体,构建新的认识体系,营造有利于学生学习的氛围。

  4、发挥教材的多种教学功能。

  用好章头图,激发学生的学习兴趣;发挥阅读材料的功能,培养学生用数学的意识;组织好研究性课题的教学,让学生感受社会生活之所需;小结和复习是培养学生自学的好材料。

  5、加强课堂教学研究,科学设计教学方法。

  根据教材的资料和特征,实行启发式和讨论式教学。发扬教学民主,师生双方密切合作,交流互动,让学生感受、理解知识的产生和发展的过程。教研组要根据教材各章节的重难点制定教学专题,每人每学期指定一个专题,安排一至二次教研课。年级备课组每周举行一至二次教研活动,积累教学经验。

  6、落实课外活动的资料。

  组织和加强数学兴趣小组的活动资料,加强对高层次学生的竞赛辅导,培养拔尖人才。

  四、教研课题

  ——高中数学新课程新教法

  五。教学进度

  第一周集合

  第二周函数及其表示

  第三周函数的基本性质

  第四周指数函数

  第五周对数函数

  第六周幂函数

  第七周函数与方程

  第八周函数的应用

  第九周期中考试

  第十——十一周空间几何体

  第十二周点,直线,面之间的位置关系

  第十三——十四周直线与平面平行与垂直的判定与性质

  第十五——十六周直线与方程

  第十八——十九周圆与方程

  第二十周期末考试

  高二数学教学计划范文2教材分析:

  本学期我任教05财会(3)班数学,所选的教材是人民教育出版社职业教育中心编著的《数学(基础版)》。该教材是在原有职业高中数学教材的基础上,依据国家教育部新制定的《中等职业学校数学教学大纲(试行)》重新编写的,具有以下特点:

  1.注重基础:

  “大纲”对传统的初等数学教育内容进行了精选,把理论上、方法上以及代生产与生活中得到广泛应用的知识作为各专业必学的基本内容。根据“大纲”要求,把函数与几何,以及研究函数与几何的方法作为教材的核心内容。

  2.降低知识起点

  多数中职学生对学过的数学知识需要复习与提高,才能顺利进入中职阶段的数学学习。这套数学教材编写从学生的实际出发,提高中职学生的数学素质,使多数学生能完成“大纲”中规定的教学要求,以保证中职学生能达到高中阶段的基本数学水准。

  3.增加较大的使用弹性

  考虑中等职业学校专业的多样性,各对数学能力的要求也不相同,教学要求给出了较大的选择范围,增加了教学的弹性。教材中给出了三个层次:一是必学的内容分两种教学要求(在教参中指出);二是教材中配备一些难度较大的习题,供学有余力的学生去做,培养这些学生的解题能力;三是编写了选学内容,选学内容主要是深化基本内容所学知识和应用基本内容解决实际问题的能力。

  4.注重数学应用意识的培养

  每章专设应用一节,列举数学在生活实际、现代科学和生产中应用的例子,培养学生用数学解决实际问题的意识和能力。

  5.注重培养学生使用计算机工具的能力

  在“大纲”中,要求培养学生使用基本计算工具的恩能够里。这就要求学生掌握使用计数器的技能,所以在新教材中增加了用计数器做的练习题。有条件的学生还可以培养学生使用计算机技术。

  教材内容:

  本学期使用的是第二册的教材,内容包括:平面解析几何,立体几何,排列、组合与二项式定理,概率与统计初步。

  每章编写结构:引言,正文(大节、小节、联系、习题),复习问题和复习参考题,阅读材料(数学文化)等。除个别标注星号的选学内容外,都是必学内容。

  学生情况分析及教学对策:

  05财会(3)班是我刚接手的班级,因而对学生的情况并不是非常熟悉。从总体上看,该班的学习中坚力量主要在一小部分的女生,其他学生学习积极性较差。在要学习的学生当中,普遍表现出底子薄、基础差的特点,对以往知识的缺漏非常多。因而在教学过程当中,及时补遗、查漏补缺尤为重要。知识引入环节我设置旧知识补遗,先回顾新课所涉及到的旧知识点;对学生的要求以能处理简单的操作题为主。另外,舒适的环境对学生的情绪也有挺大的影响,因而在教学过程中应渗入环境教育,培养学生的环境保护意识。

  教 学 进 度 表

  周次

  起讫月日

  教学内容

  教时

  执行情况

  1

  8月28日至9月3日

  学期准备工作

  2

  9月4日至9月10日

  8.1(1);8.2(2);8.3(2)

  5

  3

  9月11日至9月17日

  8.4(2);8.5(2);8.6(1)

  4

  9月18日至9月24日

  8.7(1);8.8(1);习题(1);8.9(2)

  9月25日至10月1日

  8.10(1);8.11(1);8.12(1);习题(2)

  6

  10月2日至10月8日

  国庆放假

  7

  10月9日至10月15日

  8.13(3);8.14.1(2)

  8

  10月16日至10月22日

  8.14.2(1);8.15(3);习题(1)

  9

  10月23日至10月29日

  习题(1);第一章复习(2);9.1(2)

  10

  10月30日至11月5日

  9.2(1);9.3(2);9.4(1);9.5(1)

  11

  11月6日至11月12日

  期中考复习

  12

  11月13日至11月19日

  期中考试

  13

  11月20日至11月26日

  9.6(1);复习(2);9.7(1);9.8(1)

  14

  11月27日至12月3日

  9.9(1);9.10(2);9.11(2)

  15

  12月4日至12月10日

  习题(2);9.12(1);9.13(2)

  16

  12月11日至12月17日

  9.14(1);9.15(1);9.16(2);9.17(1)

  17

  12月18日至12月24日

  9.17(1);习题(2);9.18(1)

  18

  12月25日至12月31日

  9.19(2);9.20(1);9.21(2)

  19

  1月1日至1月7日

  9.22(1);9.23(3);9.24(1)

  20

  1月8日至1月14日

  9.25(3);习题(2)

  21

  1月15日至1月21日

  期末复习

  22

  1月22日至1月28日

  期末考试

  23

  1月29日至2月4日

  期末结束工作

  24

  2月5日至2月11日

  高二数学教学计划范文3一、教学目标

  1 知识与技能

  〈1〉结合函数图象,了解可导函数在某点取得极值的必要条件和充分条件

  〈2〉理解函数极值的概念,会用导数求函数的极大值与极小值

  2 过程与方法

  结合实例,借助函数图形直观感知,并探索函数的极值与导数的关系。

  3 情感与价值

  感受导数在研究函数性质中一般性和有效性,通过学习让学生体会极值是函数的局部性质,增强学生数形结合的思维意识。

  二、重点:利用导数求函数的极值

  难点:函数在某点取得极值的必要条件与充分条件

  三、教学基本流程

  回忆函数的单调性与导数的关系,与已有知识的联系

  提出问题,激发求知欲

  组织学生自主探索,获得函数的极值定义

  通过例题和练习,深化提高对函数的极值定义的理解

  四、教学过程

  〈一〉创设情景,导入新课

  1、通过上节课的学习,导数和函数单调性的关系是什么?

  (提问C类学生回答,A,B类学生做补充)

  函数的极值与导数教案 2、观察图1.3.8表示高台跳水运动员的高度h随时间t变化的函数函数的极值与导数教案=-4.9t2+6.5t+10的图象,回答以下问题

  函数的极值与导数教案函数的极值与导数教案函数的极值与导数教案函数的极值与导数教案

  函数的极值与导数教案

  函数的极值与导数教案函数的极值与导数教案

  (1)当t=a时,高台跳水运动员距水面的高度,那么函数函数的极值与导数教案在t=a处的导数是多少呢?

  (2)在点t=a附近的图象有什么特点?

  (3)点t=a附近的导数符号有什么变化规律?

  共同归纳: 函数h(t)在a点处h/(a)=0,在t=a的附近,当t0;当t>a时,函数函数的极值与导数教案单调递减, 函数的极值与导数教案

  3、对于这一事例是这样,对其他的连续函数是不是也有这种性质呢?

  探索研讨

  函数的极值与导数教案1、观察1.3.9图所表示的y=f(x)的图象,回答以下问题:

  函数的极值与导数教案(1)函数y=f(x)在a。b点的函数值与这些点附近的函数值有什么关系?

  (2) 函数y=f(x)在a。b。点的导数值是多少?

  (3)在a。b点附近, y=f(x)的导数的符号分别是什么,并且有什么关系呢?

  2、极值的定义:

  我们把点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值;

  点b叫做函数y=f(x)的极大值点,f(a)叫做函数y=f(x)的极大值。

  极大值点与极小值点称为极值点, 极大值与极小值称为极值。

  3、通过以上探索,你能归纳出可导函数在某点x0取得极值的充要条件吗?

  充要条件:f(x0)=0且点x0的左右附近的导数值符号要相反

  4、引导学生观察图1.3.11,回答以下问题:

  (1)找出图中的极点,并说明哪些点为极大值点,哪些点为极小值点?

  (2)极大值一定大于极小值吗?

  5、随堂练习:

  如图是函数y=f(x)的函数,试找出函数y=f(x)的极值点,并指出哪些是极大值点,哪些是极小值点。如果把函数图象改为导函数y=函数的极值与导数教案的图象?

  函数的极值与导数教案讲解例题

  例4 求函数函数的极值与导数教案的极值

  教师分析:①求f/(x),解出f/(x)=0,找函数极点;②由函数单调性确定在极点x0附近f/(x)的符号,从而确定哪一点是极大值点,哪一点为极小值点,从而求出函数的极值。

  学生动手做,教师引导

  解:函数的极值与导数教案函数的极值与导数教案=x2-4=(x-2)(x+2)令函数的极值与导数教案=0,解得x=2,或x=-2.

  下面分两种情况讨论:

  (1) 当函数的极值与导数教案>0,即x>2,或x

  (2) 当函数的极值与导数教案

  当x变化时, 函数的极值与导数教案 ,f(x)的变化情况如下表:

  x

  (-∞,-2)

  -2

  (-2,2)

  (2,+∞)

  +

  _

  f(x)

  单调递增

  函数的极值与导数教案单调递减

  函数的极值与导数教案因此,当x=-2时,f(x)有极大值,且极大值为f(-2)= 函数的极值与导数教案 ;当x=2时,f(x)有极

  小值,且极小值为f(2)= 函数的极值与导数教案

  函数函数的极值与导数教案的图象如:

  函数的极值与导数教案归纳:求函数y=f(x)极值的方法是:

  函数的极值与导数教案1求函数的极值与导数教案,解方程函数的极值与导数教案=0,当函数的极值与导数教案=0时:

  (1) 如果在x0附近的左边函数的极值与导数教案>0,右边函数的极值与导数教案

  (2) 如果在x0附近的左边函数的极值与导数教案0,那么f(x0)是极小值

  课堂练习

  1、求函数f(x)=3x-x3的极值

  2、思考:已知函数f(x)=ax3+bx2-2x在x=-2,x=1处取得极值,

  求函数f(x)的解析式及单调区间。

  C类学生做第1题,A,B类学生在第1,2题。

  课后思考题

  1、若函数f(x)=x3-3bx+3b在(0,1)内有极小值,求实数b的范围。

  2、已知f(x)=x3+ax2+(a+b)x+1有极大值和极小值,求实数a的范围。

  课堂小结

  1、函数极值的定义

  2、函数极值求解步骤

  3、一个点为函数的极值点的充要条件。

  作业 P32 5 ① ④

  教学反思

  本节的教学内容是导数的极值,有了上节课导数的单调性作铺垫,借助函数图形的直观性探索归纳出导数的极值定义,利用定义求函数的极值。教学反馈中主要是书写格式存在着问题。为了统一要求主张用列表的方式表示,刚开始学生都不愿接受这种格式,但随着几道例题与练习题的展示,学生体会到列表方式的简便,同时为能够快速判断导数的正负,我要求学生尽量把导数因式分解。本节课的难点是函数在某点取得极值的必要条件与充分条件,为了说明这一点多举几个例题是很有必要的。在解答过程中学生还暴露出对复杂函数的求导的准确率比较底,以及求函数的极值的过程板书仍不规范,看样子这些方面还要不断加强训练函数的极值与导数教案

  研讨评议

  教学内容整体设计合理,重点突出,难点突破,充分体现教师为主导,学生为主体的双主体课堂地位,充分调动学生的积极性,教师合理清晰的引导思路,使学生的数学思维得到培养和提高,教学内容容量与难度适中,符合学情,并关注学生的个体差异,使不同程度的学生都得到不同效果的收获。

  高二数学教学计划范文4我以前一向是在教文科班的数学,这学期对于我来说,面临着挑战,因为本学期我接手了两个理科班。以前我带的始终是文科班,对于文科班的学生的状况比较理解,但对于理科班来说,我不明白他们对学习会有怎样的想法与做法。针对这种状况,我制定了如下的高中数学教学计划:

  一、指导思想

  在学校、数学组的领导下,严格执行学校的各项教育教学制度和要求,认真完成各项任务,严格执行“三规”、“五严”。利用有限的时间,使学生在获得所务必的基本数学知识和技能的同时,在数学潜力方面能有所提高,为学生今后的发展打下坚实的数学基础。

  二、教学措施

  1、以潜力为中心,以基础为依托,调整学生的学习习惯,调动学生学习的用心性,让学生多动手、多动脑,培养学生的运算潜力、逻辑思维潜力、运用数学思想方法分析问题解决问题的潜力。

  精讲多练,一般地,每一节课让学生练习20分钟左右,充分发挥学生的主体作用。

  2、坚持每一个教学资料群众研究,充分发挥备课组群众的力量,精心备好每一节课,努力提高上课效率。

  调整教学方法,采用新的教学模式。

  3、脚踏实地做好落实工作。

  当日资料,当日消化,加强每一天、每月过关练习的检查与落实。坚持每周一周练,每章一章考。透过周练重点突破一些重点、难点,章考试一章的查漏补缺,章考后对一章的不足之处进行重点讲评。

  4、周练与章考,切实把握试题的选取,切实把握高考的脉搏,注重基础知识的考查,注重潜力的考查,注意思维的层次性(即解法的多样性),适时推出一些新题,加强应用题考察的力度。

  每一次考试试题坚持群众研究,努力提高考试的效率。

  5.注重对所选例题和练习题的把握:

  6.周密计划合理安排,现数学学科特点,注重知识潜力的提高,提升综合解题潜力,加强解题教学,使学生在解题探究中提高潜力。

  7.多从“贴近教材、贴近学生、贴近实际”角度,选取典型的数_系生活、生产、环境和科技方面的问题,对学生进行有计划、针对性强的训练,多给学生锻炼各种潜力的机会,从而到达提升学生数学综合潜力之目的。不脱离基础知识来讲学生的潜力,基础扎实的学生不必须潜力强。教学中不断地将基础知识运用于数学问题的解决中,努力提高学生的学科综合潜力。

  三、对自己的要求――落实教学的各个环节

  1.精心上好每一节课

  备课时从实际出发,精心设计每一节课,备课组分工合作,利用群众智慧制作课件,充分应用现代化教育手段为教学服务,提高四十五分钟课堂效率。

  2.严格控制测验,精心制作每一份复习资料和练习

  教学中配备资料应要求学生按教学进度完成相应的习题,老师要给予检查和必要的讲评,老师要提前向学生指出不做的题,以免影响学生的学习。三类练习(大练习、训练、月考)试题的制作分工落实到每个人(备课组长出月考卷,其他教师出大练习、训练卷),并经组长严格把关方可使用。注重考试质量和试卷分析,定期组织备课组教师进行学情分析,发现问题,寻找对策,及时解决,确保学生的学习用心性不断提高。

  3.做好作业批改和加强辅导工作

  我们的工作对象是活生生的对象──学生,那里需要关心、帮忙及鼓励。我们要对学生的学习状况做超多的细致工作,批改作业、辅导疑难、及时鼓励等,个性是对已经出现数学学习困难的学生,教我们的辅导更为重要。在教学中,要尽快掌握班上学生的数学学习状况,有针对性地进行辅导工作,不仅仅要给他们解疑难,还要给他们鼓信心、调动自身的学习用心性,帮忙他们树立良好的学习态度,用心主动地去投入学习,变“要我学”为“我要学”。

指数函数教案范例篇2

  案例1.某校现在高一新生Y,中考数学成绩六十几分,据本人讲,涉及数与式的计算、解方程或不等式等问题,运算顺序搞不清,公式、法则乱用,很少做对过,函数更是一片空白。几何证明题不知如何下手。该生进入高一后,有学好的愿望,但努力不够,学集合时还勉强跟得上,学函数时几乎听不懂,学三角函数时公式混淆不会用,学向量时因教学进度快等于没有学。期末考试数学成绩25分以内。

  案例2.某重点中学现在高一新生X(中考数学成绩一百一十分左右,数学基础较好),大多数时间能听懂老师讲的知识,但学习主动性不强,平时每次考试成绩总在七十分左右,失误较多,解题思路不灵活,期末考试数学成绩近60分。从学生做的笔记看,在讲指数函数前,教师补讲了求函数解析式的方法,求值域的方法,二次函数恒成立问题,对勾函数,函数的对称性和周期性,抽象函数等内容,且要求高,期末考试内容为必修一全部,三角函数,向量的线性运算。

  上面的案例在一些学校具有普遍性,值得研究。怎样处理这些问题?笔者结合自己的教学实践谈一谈体会。

  一、教师主导方面

  要在自身学习和诱导学生学习上下功夫。“每一天我走进教室,我就在想我能学到什么。我是教师,也是学习者,而不只是知识的传递者。”

  1.上好第一堂课,产生光环效应。不讲新课,首先可通过自我介绍以及提出对自身的要求,希望在学生心目中树立起较好的形象,拉近与学生的距离,做好“亲其师,信其道”的铺垫作用。可讲以往差生的成功案例,鼓励学生学好数学的信心。“我认为提高学生学习成绩最重要的不在于条件和资源,而在于教师的核心信念。我们必须从一开始就有所有孩子都能够达到最高水平的信念。”其次介绍高中数?W的特点,为转变学生学习观念,注意学习方式做准备。最后做一个问卷调查,全面了解学生。问卷内容涉及中考总成绩,数学成绩,什么数学知识学的最好(或最差),有何特长,你的理想是什么,你对新教师期望,你以前数学教师的优点等。

  2.做好衔接,承上启下。教师要通过学习《义务教育数学课程标准》或初中数学教科书,搞清初中新课标中已删除或已降低要求的但高中仍需衔接的、需熟练掌握的内容,并在问卷调查的基础上制定好衔接内容的讲解计划,然后有效实施。一般情况下,在讲集合之前可补讲立方和与差的公式,十字相乘法及用它解一元二次方程,根与系数的关系(韦达定理)。在讲函数之前可适当复习一次函数、反比例函数、二次函数,并结合初中知识研究一次分式函数,熟练掌握配方法以及二次函数图像的顶点和对称轴公式。在讲分数指数幂之前可复习二次根式的有关概念,补讲分子、分母有理化和根号下含有字母的化简与运算,在讲任意角的三角函数之前适当复习初中锐角三角函数知识,并作一些拓展,如同角三角函数间的关系,两锐角互余的三角函数间的关系等。

  3.开学初,教师可将本学期所要涉及的重要知识点或思想方法系统的总结并印出来,要求学生贴在书封面里,以便随时翻阅、记忆。平时教学中,注意加强学法指导(班上可自行订阅这类书,特别是班主任教师和任课教师一道利用班会课等时间给予学生系统指导)。

  4.教师对这学期教学内容、教学要求、教学进度要有统筹规划、细化,防止拔高教学的要求随意性和盲目性,要不忘初心。平时教学少一些高考化,一些问题,如抽象函数可否淡化处理,尽量不考大题,函数的图像及性质在学完三角函数后再作适当的深化也许更恰当?我个人认为高一上期教学内容定为必修一全部,必修四中的三角函数、平面向量,不讲三角恒等变换。这样教学时间不会太紧,不急于赶进度,也不会因三角公式太多太集中让学生很不适应,更便于必修五中的解三角形的学习。

  5.要减少学生懂而不会的现象,须在培养学生思维的灵活性、深刻性上狠下功夫。教学中可尽量采用变式教学,注意一题多解、一题多变、一题多用;多问几个为什么:为什么这样做,为什么这样想,它的背景是什么,为什么这样转化,让学生多层次、广视角、全方位认识数学。最好是每上一课后写好教学反思,每一次测验后要分析得失。因为“一个教师写一辈子教案不一定成为名师,如果一个教师写三年教学反思,则有可能成为名师。”

  6.面批作业,及时反馈。每周利用晚自习面批,特别是针对学困生面批,发现问题辅导、及时就错、及时补救练习。

  7.每次较大型考试考完后,教师立即公布详尽答案,要求每一题尽量一题多解,学生订正后再有针对性的讲解,对未达标的学生,要求再做一次相似练习题。

  二、学生主体方面

  一定要明白学习是自己的事。就正如《国际歌》中所说“从来就没有什么救世主,也不靠神仙皇帝,要创造人类的幸福,全靠我们自己”。

  1.学生自己学习要积极主动,培养对数学的兴趣,养成好的习惯,习惯于看课本,熟读精思,善于提出问题。

  2.准备一个笔记本,记好题,记典型错题,记不懂、不理解的题,记数学规律、数学小结论,记反思,记感想等。每一周交老师检查评价。

  3.自选层次,努力达标。根据本班实际和学生自身意愿,可将将作业分成三个层次,课代表三个,每个课代表各负责一个层次的作业。第一层次先将当天学的知识要点抄写在做业本上,然后做课本上的例题或A组习题,第二层次做课本B组习题或练习册上的中档题,第三层次做课本上高档题和练习册上的高档题或教师补充的题,每两周再自行调整。

  4.各层次学生每天做一道补充习题,以巩固前面所学内容为主,如此反复,防止知识遗忘。

  5.每周做一次小测验,六个选择题,两个填空题,两个解答题,要求这些题全是低中档题,一般能保证百分之八十学生在五十分钟内全部完成。一道较高要求的选做题,供学生选做。测验完后立即公布答案。

指数函数教案范例篇3

  关键词:“三自主”教学;函数单调性;教学设计

  教学背景

  函数的单调性是函数的一个重要性质,函数单调性的学习对于今后学习函数其他性质以及研究基本初等函数具有重要意义,在其他方面也有着广泛的应用,在高考中有着重要地位。在前几届的高一教学中,对于函数的单调性,笔者都是按照传统模式上课的,教师引入――提问――讲解――总结,学生思考――回答――练习――小结。 但是实践下来,学生对单调性概念中的“任意”两字理解还是不深刻,一些易错的地方总是要出错,如反比例函数在定义域内为什么不单调,定义法证明的步骤不规范、不严谨等。 究其原因有两点:一是学生上课前没有预习,缺少对概念的基本了解,学生被教师牵着鼻子走,没有自己的见解和思想。 二是虽然教师在讲解时作了适当的引入和铺垫,但由于课堂时间的有限性,还是导致学生参与的太少,因此无法深入理解概念。 本文是笔者在函数单调性概念课开展“三自主”教学的一次成功尝试。 “三自主”模式是为探索适合我校实际,为提高学生学业成绩和自主学习能力而开展和实施的一种教学模式。 “三自主”即课前自主预习、课内自主探讨交流、课后自主练习。 “三自主”模式是指学生学习过程中的三个环节:课前预习环节让学生自主预习,完成学案中的问题导引和尝试习题;课内自主探讨交流环节是指在学生完成学案的基础上,师生探讨交流,教师进行有针对性的讲授,然后完成课内过关练习,教师当场组织校对答案,及时反馈课堂教学效果;课后自主练习环节是在完成课堂教学任务后,学生自主完成教师精心设计的课外提高训练。

  下面就这一课时的问题导引和尝试练习的编制及教学探讨笔者的设计思路及看法。

  学案的设计

  问题导引和尝试练习是“三自主”数学学案的两个重要模块,它们的编制要围绕教学目标的达成而设计。 现对教学目标作如下分析:(1)知识与技能:理解函数的单调性、单调区间的概念,并能根据函数的图象指出单调性、写出单调区间,能运用定义证明简单函数的单调性,同时体会数形结合的思想方法。(2)过程与方法:通过学生自主预习且完成学案,引导学生举出实例,画出函数的图象,观察、猜想、操作、验证、抽象、概括,形成概念,通过探讨、交流、体验,由直观感知到符号表示、由具体到抽象、由特殊到一般的认知规律,经历和感悟定义形成及数学知识的发生、发展过程。 (3)情感态度与价值观:经历自主学习、探讨交流的过程,体验数学的思考和研究问题的方式,提升数学阅读理解能力及数学素养,培养勇于探索、求真务实的科学自主精神。 围绕这个教学目标,笔者编制了如下的问题导引和尝试练习:

  1. 问题导引的设计

  (1)函数的表示法有哪些?你能用图象法举出函数的几个具体的生活实例,并结合图象说明函数的变化规律吗?

  设计意图:复习上一节内容的同时,通过具体的生活实例让学生观察函数图象的上升、下降,使其形成对函数增减性的直观感知,认识到研究函数增减性的实际意义。

  (2)试用图象法说明在定义域内函数y=x2随x的增大,相应的y的值如何变化?

  设计意图:借助熟悉的二次函数图象,引导学生归纳出函数图象在定义域内不总是上升或下降,进而提问学生如何更准确、更具体地刻画图象的有升有降,让学生体会引入区间来刻画升降的必要性,说明函数的增减性是相对于某一具体区间而言的。

  (3)试用列表法分析和判断f(x)=x2的增减性。

  这种分析方法完整和严密吗?为什么?

  设计意图:引导学生把从图象上得到的单调性变化规律转化到用数学关系来表述。 由直观到抽象,揭示知识的生成过程;使学生认识到自变量取值的无限性,即自变量是无法用表格一一列举完全的,激发学生的寻找有效证明方法的兴趣;从而引导学生想到能代替无限取值的两个任意自变量x1、x2,进而去比较f(x1)与f(x2)的大小。 从而突破了教学难点,让学生明白增减性定义形成的必然性和价值。

  (4)试用解析法,即代数推理的方法,证明f(x)=x2在区间[0,+∞)上f(x)随x的增大而增大?

  设计意图:让学生体会判断函数单调性与证明函数单调性的差别,尝试用定义法去证明单调性,虽然步骤不完整,但因为有了事先对教材的阅读,学生基本上都能想到此法。 同时引导学生得出比较两数大小的基本方法:作差法。为用定义法描述和证明单调性作了第一次铺垫。

  (5)增函数(减函数)的定义怎样?请指出哪些是关键词,并说明这些关键词的作用与含义。 定义中“当x1

  设计意图:促成学生对概念的深刻理解,引导学生去探究概念的本质,达到对概念的完整认识,建立斜率与导数的几何形式的联系。 特别要引导学生理解以下两方面;一是定义表述中强调了给定区间,就是说函数的单调性是相对于某一具体区间而言的;二是定义表述中的“任意”x1、x2,隐含了两方面的含义:第一x1,x2必须是同一个单调区间上的两个自变量;第二x1、x2在同一个单调区间上必须具有任意性,否则定义将不具备充分性。

  (6)什么是函数的单调性?什么是单调区间?单调性与增减性有什么联系?

  设计意图:为学生理解相关概念提供思考的问题,引导学生在自主预习中作深入思考,理解概念的本质。 单调性分为增函数和减函数两种情况,若一个函数在某区间上它既有增又有减,那它在该区间上就既不是增函数也不是减函数,即在这个区间上不单调;为了能局部地描述图象特征,因此引入了单调区间的概念,也就是说确定在哪个范围是增的,哪个范围是减的,因此函数的单调性是针对某一范围来讲的。

  (7)仔细阅读书上第29页例2,体会函数单调性在物理学中的应用,并总结用定义法证明单调性的步骤。

  设计意图:掌握证明函数单调性的方法及基本步骤,并深入理解什么是代数证明,代数证明要做什么事,将代数证明程序化、符号化,同时体会单调性在实际问题中的应用,呼应了问题1研究函数单调性的实际意义。

  2. 尝试练习的设计

  例1 如图1所示,此函数的单调递增区间是________,单调递减区间是________。

  设计意图:能根据函数的图象指出单调性,写出单调区间。

  例2 填表

  设计意图:以表格形式呈现有益于掌握这三个基本初等函数的单调性,同时体会定义域是研究单调性的前提,单调区间一定是定义域的子集。 其次二次函数和反比例函数是学好单调性的很好载体,把这两个函数弄清楚了,以后其他的函数也就没问题了。 引导学生用两个很形象的语句来描述这两个函数单调性的特征,二次函数的特征是“一国两制”,同一个函数两个不同的单调性,这里对于反比例函数单调性组织学生讨论,最终得出其特征是“军阀割据”,尽管在(-∞,0),(0,+∞)上都是增或减的,但它们各自为营,互相独立,不能将区间合并,同时总结如何用反例否定函数的增减性。

  例3 已知函数f(x)=x+(x≠0),证明函数在[1,+∞)是增函数。

  设计意图:通过学生板演,暴露学生的错误及表达的不规范性,然后让学生自我纠错,完善解题步骤。 最后师生总结书写的注意点及解题中关键步骤“变形”的目标和基本技能,形成“取值―作差―变形―定号―判断”这一基本步骤。

  例4 已知函数f(x)=ax2-2x+3在(-∞,3)上为单调函数,求a的取值范围。

  设计意图:对单调性的拓展与延伸,使学生理解“在某个区间上具有单调性”与“函数的单调区间是某个区间”这是两个不同的概念,前者是后者的子集;同时巩固一次与二次函数的单调性知识,渗透分类讨论的思想:其一是对二次项系数是等于0、大于0还是小于0的讨论,其二对单调函数要分成单调增和单调减两种情况考虑。

  “函数单调性”的“三自主”教学反思

  1. 开展“课内探讨交流”前,教师需要充分了解学情

  “三自主”模式提出把课堂还给学生,表面上好像解放了教师,其实不然。 教师需要对学生及其学习的知识点的情况有很高的熟悉程度,课前需要对学案进行检查和批阅,以便教师更好地在课堂中起启发、引领的作用。 譬如例4的解答,在检查学案时发现学生的解答条理不清,不会分类讨论,其次还是用单调性定义在证明。 这说明学生不知道一次函数和二次函数单调性的结论可以直接运用。 此时就需要教师及时点拨、引导和总结。 同时,由于在课堂上可能出现更多、更复杂的一些即兴情况,这就需要教师站得更高,根据实际及时来调整课堂。

  2. 教师要设计“有效”的问题导引和尝试练习

  张奠宙教授提出:“教师的责任在于把写在教科书上的冰冷的学术形态,恢复为学生易于接受的火热思考的教育形态” 。学案中的问题导引和尝试练习是学生的指路明灯,它起到指引学生进行自主预习、促进学生由浅入深理解概念及学会运用概念的作用,问题导引和尝试练习编制的质量好坏直接关系到“三自主”上课的成败。 “三自主”教学模式基于问题导引和尝试练习的定向设计,使得学生易于接受和理解教科书上的冰冷的学术形态。 同时,学生在完成学案和探讨交流中暴露出来的问题, 使得教师易于捕捉学生存在的问题,从而进行“有的放矢”的教学,以致提高课堂教学的有效性。 最关键的是,“三自主”教学以学生自主预习为前提,以学生探讨交流为重心,易于培养学生良好的自学习惯和提高学生的自主能力,最终达成培养学生分析问题、解决问题和总结反思能力的目的。

指数函数教案范例篇4

  中图分类号:G633.6 文献标识码:A 文章编号:1671-0568(2014)15-0041-01

  一、问题的提出

  新课程理论指出:学生学习知识不单是从教师授课的课程中获取,还需要学生结合教师的指导以及同学的合作,将自身的学习经验运用于一定的情境中,主动构建以获取课堂知识。理论主要阐述学生是学习的主体,课堂知识的获取应以学生主动学习为重心,而教师的作用只是辅导或促进学生获取知识。几年来,笔者通过对新课程理论的学习和实践,发现在中学数学教学中若能贯彻这一原则,数学课堂将是一种高效的活动。

  二、教材中的地位

  众所周知,初中教纲中已经涉及初步探讨正比例函数、反比例函数、一次函数以及二次函数的图象与性质。高中数学《指数函数的图象与性质》这节内容是在指数范围扩充到实数的基础上引入指数函数的,而指数函数是高中研究的第一种具体函数。由此可知,指数函数的图象与性质是课程知识学习的重点,而正确理解和掌握底数a对函数变化的影响是学习的难点。本节课主要是要求学生利用描点法画出函数的图象,并描述出函数的图象特征,从而指出函数的性质。通过这样的授课活动,从而使学生强化从形到数的熟悉,体验研究函数的过程与思路,实现意识的深化。

  三、教学背景设计

  新课改给予了我们全新的教学理念,在新教材的教学中,笔者慢慢体会到新教材渗透的、螺旋式上升的基本理念,知识点的形成过程经历从具体的实例引入,形成概念,再次运用于实际问题或具体数学问题的过程,它的应用性、实用性更明显的体现出来。学数学重在培养学生的思维品质,经过多年的数学学习,学生还是害怕学数学,尤其高中的数学,对于学生来说显得很抽象。所以,如果再让学生感到数学离我们的生活太远,那么将很难激发他们的学习爱好。在教学中要尽力抓住知识的本质,以实际问题引入新知识。另外,就本章来说,指数函数是学习函数概念及基本性质之后研究的第一个重要的函数,让学生学会研究一个新的具体函数的方法比学会本身的知识更重要。在这个过程中,所有的知识都是生疏的,在大脑中没有形成基本的框架结构,需要老师的引导,使他们逐渐建立。数学中任何知识的形成都体现出它的思想与方法,因而授课中注重让学生领悟其中的思想,运用其中的方法去学习新的知识是非常重要的。

  四、教学目标确立

  1.知识目标:准确理解指数函数定义,初步掌握指数函数图象与性质,并能简单应用。

  2.过程与方法:由实例引入指数函数的概念,利用描点作图的方法做出指数函数的图象,(有条件的话借助计算机演示、验证指数函数图象)由图象研究指数函数的性质,利用性质解决实际问题。

  3.能力目标:一是探讨指数函数的图像与性质,培养学生观察、分析和归纳能力,并使学生进一步了解数形结合的数学思想方法;二是分析指数函数变化规律,使学生能掌握函数变化的基本分析方法。

  【教学过程】

  由实际问题引入:

  问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个……以此类推,1个细胞经过x次分裂后,细胞个数y与x的函数关系表达式是什么?

  分裂次数与细胞个数:1,2;2,2×2=22;3,2×2×2=23;……;x,2×2×……×2=2x,归纳:y=2x。

  问题2:某种放射性物质经过不断放射会转为其它物质,该物质每经过1年放射后占原先物质总量的84%,x年后该物质的剩留量y与x的函数表达式是什么?

  经过1年,剩留量y=1×84%=0.841;经过2年,剩留量y=0.84×0.84=0.842…… 经过x年,剩留量y=0.84x。

  寻找异同:由以上两个实例中,能归纳总结出函数表达式的异同点吗?

  共同点:以上两个实例中,变量x与y函数表达式都为指数函数形式,底数都为常数,自变量为指数;不同点:底数的取值不同。

  下面,我们来学习一个新的基本函数:指数函数。指数函数的定义:函数表达式为y=ax(a>0且a≠1)的函数叫做指数函数。我们在以前所学的函数中,函数表达式为y=kx+b(k≠0)的函数是一次函数,函数表达式为y=k/x(k≠0)的函数是反比例函数,函数表达式为y=ax2+bx+c(a≠0)的函数是二次函数。对于其一般形式上的系数都有相应的限制。问:为什么指数函数对底数有这样的要求呢?

  若a=0,当x>0时,恒等于0,没有研究价值;当x≤0时,无意义。

  若a<0,当x=0,……时是无意义的,没有研究价值。

  若a=1,则x=1,y是一个常量,也没有研究的必要。

  所以有规定a>0且a≠1.

  由定义,我们可以对指数函数有一初步熟悉。

  进一步理解函数的定义:

  指数函数的定义域:在我们学过的指数运算中,指数可以是有理数,当指数是无理数时,也是一个确定的实数,对于无理数,学过的有理指数幂的性质和运算法则都适用,所以指数函数的定义域为R。

  研究函数的途径:

  由函数的图象的性质,从形与数两方面研究。函数的应用是函数学习的重要课堂目标,通过探讨分析函数图象与性质,从而使用函数的图象与性质解决实际问题以及数学问题。根据以往的经验,你会从那几个角度考虑?(图象的分布范围,图象的变化趋势,……)函数图象分布与函数的定义域和值域有关,函数的变化规律表现出函数的单调性。引导学生从定义域,值域,单调性,奇偶性,与坐标轴的交点情况着手开始。

  首先做出指数函数的图象,以具体函数入手,让学生以小组形式取不同底数的指数函数画它们的图象,将学生画的函数图象展示,(画函数图象的步骤是:列表、描点、连线)。 最后,老师在黑板(电脑)上演示列表,描点,连线的过程,并且画出取不同的值时函数的图象。要求学生描述出指数函数图象的特征,并试着描述出性质。

  数学演变过程表明,任何重要的数学概念从提出到发展都有着丰富的经历,新课程教学理论中已经较好地阐述出这点。在新课程理论指导下,学生要了解数学知识的学习是一种数学化的过程,也就是说,学生通过仔细观察和思考常识材料并经过分析、比较、综合、抽象、概括等思维活动,对常识材料进行归纳总结。文章案例正是从数学实验过程研究以及数学知识研究的角度进行设计,学生的思维过程可能没有重演人类对数学知识探索的全过程,然而学生通过数学实验的观察和思考,并经历分析、比较、综合、抽象、概括等思维活动,能真切地感受将数学知识数学化的探索过程,从而激发学生学习数学知识的兴趣,并能了解数学知识的一些研究方法。

  学生学习的数学知识虽是前人已经提出并发展好的,然而课堂要求掌握的数学知识对于学生来说是全新的,需要学生经历自身的思维活动再现数学知识形成的过程。教师应该把教学设计成学生动手操作、观察猜想、揭示规律等一系列过程,学生的探索、分析与思考,侧重于过程的探究及在此过程中所形成的一般数学能力。

  教师活动的展开应以学生活动为主体,教师地位应从主导者转为引导者,通过教师的引导,学生能够积极学习数学知识,能够独立探索数学知识的研究过程。使教学活动始终处于学生的“最近发展区”,使每一个学生通过自己的努力,在自己原有的基础上都有所获,都有提高。

指数函数教案范例篇5

  关键词:课案;导学;理解;应用

  随着课程改革的不断深入,课案导学已逐步成为课堂教学的重要手段。但不少教师和学生在对课案的认识和利用上还存在偏差,甚至把课案当作学生做的练习题。我们要正确理解课案,充分发挥其导学作用,把课堂教学“导”好“导”活,把学习的主动权真正还给学生,真正将传统讲授式的“要我学”变为学生积极主动参与式的“我要学”,让学生真正的学到知识,提高能力。

  一、如何正确理解课案导学

  课案是教师根据课标的要求,学生的认知水平和知识经验而计的有目标、有程序,有例题的课前预习、课堂学习及课后复习方案,是教师站在引导学生自学的角度上,对教材再次加工而编写的适合学生的文本。课案是教师的教案与学生的学案的统一,是教与学的统一。

  课案导学是以课案为载体,以导学问题为核心,以学生为主体,以教师为主导,由师生共同完成教学任务的一种教学模式。它提倡让学生自主学习,小组合作学习,自主探究,让学生学会学习,同学之间学会合作。

  二、如何科学编写课案

  在课案导学的教学过程中,课案起着至关重要的作用,因此课案的编写要科学合理。

  编写课案时,教师应从教材的编排原则和知识系统出发,对教材和资料以及自己所教学生的认知能力和认识水平等进行认真的分析研究,合理处理教材,尽量做到课案的设计重难点突出,让学生在获取知识的过程中能自己发现各种知识之间的联系,受到启发,形成新的观点和理论。编写课案时应注意以下几点:

  1.教与学目标明确

  从整体上把握教材的知识结构,明确教与学的目标,使知识条理化、系统化和整体化,一般一课时一个学案,以便控制学量,使学生明确学习目标,知道学什么,有目的的进行学习,最大限度地提高课堂教学效益。例如指数函数这一节第一课时的学习目标:

  (1)理解指数函数的概念和意义。

  (2)探索并掌握指数函数的图象和性质。

  2.导学问题有启发性,灵活性

  导学问题的设计分为两大类:知识理解性问题和知识运用性问题。知识理解性问题是依据学习目标的要求,精心设计能够促进学生思考、理解教材知识的思考题,使学生通过问题把握本课时的知识。知识运用性问题是根据学习目标的要求,围绕教学重难点,设计能够提高学生思维能力的思考题,引导学生运用所学知识解决问题。例如指数函数这一节第一课时的导学问题:

  (1)指数函数的概念。形如________的函数叫指数函数。

  说明:指数函数的结构特点:①底数________②指数________③系数 ________。

  (2)在一个坐标系内画出下列函数的图像。

  (4)思考探究:怎样利用指数函数的图像比较底数的大小?

  3.合理利用课案导学

  (1)学生自学完成课案中的有关问题。课前要将预先编写好的课案发给学生,首先让学生明确学习目标,并带着问题对所学内容进行预习,将预习中有疑问的地方作好记录,让学生带着问题进入课堂学习中。这样,不仅能够培养学生自主学习的能力,又能够使学生逐步养成良好的预习习惯和自学方法。而这些良好的习惯一旦形成,往往能使学生终身受益。

  (2)学生分组讨论课案中的探究问题。分组讨论是在学生自学的基础上,教师应组织学生在课堂上有效的讨论课案中的有关问题,而一些简单、易懂的内容教师只须一带而过,对于教学中的重、难点问题则应引导学生展开讨论,形成共识。而学生在讨论中不能解决的问题或存在的共性问题,教师应及时汇总,并进行讲解。值得注意的是,在学生讨论的过程中,教师应积极引导学生紧扣教材、课案,针对课案中的问题展开讨论交流,避免草草了事,最大限度地提高课堂教学的效率。

    热门推荐

    猜您感兴趣

    相关文章

    上一篇:大学生日常英语自我介绍,英语自我介绍大学生
    下一篇:高中入团申请书800字,高中入团申请书
    

    Copyright © 2022-2024 www.juzici.com

    All right reserved. 猫宁早安 版权所有

    鲁ICP备15008254号

    返回顶部重选