范文大全

小学数学《鸡兔同笼》教案,鸡兔同笼

作者: 猫宁 发布日期:2024年03月05日

小学数学《鸡兔同笼》教案篇1

    一、教学目标

  【知识与技能】

  理解掌握并会运用列表法、假设法解决“鸡兔同笼”问题。

  【过程与方法】

  经历自主探索解决问题的过程,体验解决问题的策略的多样化;在解决问题的过程中,提高逻辑推理能力,增强应用意识和实践能力。

  【情感态度价值观】

  感受古代数学问题的趣味性。

    二、教学重难点

  【教学重点】

  掌握运用列表法、假设法解决“鸡兔同笼”问题。

  【教学难点】

  理解掌握假设法,能运用假设法解决数学问题。

    三、教学过程

  (一)引入新课

  PPT呈现课本的主题图,并提问:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?是什么意思?大家能不能算出各几何呢?

  引出课题——《鸡兔同笼》

  (二)探索新知

  先从简单问题出发,呈现例1:8个头,26只脚,鸡和兔子各几只?猜测一下

  教师总结学生回答:3只兔子,5只鸡,22只脚;4只兔子,4只鸡,24只脚。均不对

  追问:按顺序列表填写一下,应该是各有几只?

  得出结论有3只鸡,5只兔子。

  进一步追问:还有没有其他方法?

  学生活动:前后四人一小组讨论。

  教师总结:假设笼子里都是鸡,那么多出来的脚的个数除以2便是兔子的只数,用头数减去便得到鸡的只数。如果假设所有的动物都是鸡,那么就有8×2=16只脚,这样就多出26-16=10只脚。多出的10只脚均为兔子的,一只兔子比一只鸡多2只脚,所以算得有10÷2=5只兔,3只鸡。

  (三)课堂练习

  PPT再次出示导入中的问题“上有三十五头,下有九十四足,问雉兔各几何”

  学生活动:学生自主选择喜欢的方法进行解决,一名学生到黑板上板演,其余学生独立完成,在黑板上板演的学生在结束后充当小老师给其他同学进行讲解

  (四)小结作业

  提问:今天有什么收获?

  教师引导学生回顾解决鸡兔同笼问题的方法。

  课后作业:思考还有没有其他方式能够解决鸡兔同笼问题?自己设计鸡兔同笼的问题去考考小伙伴或家人。

    四、板书设计

    五、课后反思

小学数学《鸡兔同笼》教案篇2

  1.了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

  2尝试用不同的方法解决“鸡兔同笼”问题,使学生体会假设法和代数法德一般性。

  3在解决问题的过程中培养学生的逻辑思维能力。

    教学重点

  用不同的方法解决问题。

    教学准备

  课件

    教学程序

    一、激趣导入

  师:咱班同学家里有养鸡的吗?有养兔的吗?既养鸡又养兔的有吗?把鸡和兔放在同一个笼子里养的有吗?在我国古代就有人把鸡和兔放在同一个笼子里养,正因为这样,在我国历才出现了一道非常有名的数学问题,是什么问题呢?你们想知道吗?这节课我们就共同来研究大约产生于一千五百年前,一直流传至今的“鸡兔同笼”问题。

  师:关于“鸡兔同笼”问题以前你们有过一些了解吗?流传至今有一千五百多年的问题,是什么样呢?想知道吗?

    二、探索新知

  1.(课件示:书中112页情境图)

  师:同学们看这就是《孙子算经》中的鸡兔同笼问题。

  这里的“雉”指的是什么,你们知道吗?这道题是什么意思呢?谁能试着说一说?

  生:试述题意。(笼子里有鸡和兔,从上面数有35个头,从下面数有94只脚。问鸡兔各几只?)

  师:正像同学们说的,这道题的意思是笼子里有若干只鸡和兔,从上面数有35各头,从下面数有94只脚。问鸡和兔各有几只?

  师:从题中你发现了那些数学信息?

  生:笼子里有鸡和兔共35只,脚一共有94只。

  生:这题中还隐含着鸡有2只脚,兔有4只脚这两个信息。

  师:根据这些数学信息你们能解决这个问题吗?这道题的数据是不是太大了?咱们把它换成数据小一点的相信同学们就能解决了。

  2.出示例一(课件示例一)

  题目:笼子里有若干只鸡和兔,从上面数有8个头,从下面数有26只脚,鸡和兔各有几只?

  师:谁来读读这个问题。

  谁能流利的读一遍?

  请同学们轻声读题,看看题里告诉我们什么信息,要解决什么问题?

  生:读题

  师:现在就请你来解决这个问题,你想怎样解决?把你的想法和小组内的同学说一说。

  生:我想我能猜出来。一次猜不对,多猜几次就能猜对。

  师:按你的意思就是随意的猜,为了不重复,不遗漏,我们可以列表按顺序推算。(板书:列表法)

  师:还有其他方法吗?

  生:我想用方程法也能解决。(板书:方程法)

  生:要是笼子里光有鸡或光有兔就好算了,可这笼子里却有两种动物,我还没想好怎么算。

  师:那我们就不妨按笼子里只有鸡或只有兔来思考,假设笼子里全是鸡或全是兔,看脚数会有什么变化,说不定从中你们就能找到解题的思路呢。(板书:假设法)

  师:还有别的方法吗?那这些方法行不行呢?下面就请同学们以小组为单位,对你们感兴趣的方法进行尝试验证一下吧。

  生:在小组内尝试各种方法。

  师:经过上面的研究学习,你们都尝试运用了哪种方法呢?下面以小组为单位进行汇报。

  生1:我们小组用列表法找到了答案,有3只鸡,5只兔。

  师:把你们研究的结果拿来让大家看看。这样按顺序推算,对于数据小的问题解决起来很方便,不过一旦数据比较大,比如笼子里的鸡和兔有100只,200只,甚至更多,再用这样的办法怎么样?

  生:很麻烦。

  师:是啊,那要花费很长时间。哪个小组还想汇报?

  生:我们小组用方程法计算的。(生说计算过程,师板书过程。)

  师:我们看这个方程列得是否正确?4X表示什么?2(8-X)表示的是什么?兔脚数+鸡脚数=什么?这就是列这个方程所依据的数量关系。谁能把这个数量关系完整的说一遍?

  生:说数量关系。(鸡脚数+兔脚数=26只脚)

  师:根据这个数量关系你能想到另两个数量关系吗?

  生:叙述另外两个数量关系。(26只脚-鸡脚数=兔脚数26只脚-兔脚数=鸡脚数)根据这两个数量关系你又能列出哪两个方程呢?

  生:汇报师板书两方程。

  师:除了可以设兔有X只,还可以怎样设?

  生:还可以设鸡有X只。那兔就有(8-X)只。

  师:对,那根据什么数量关系你又能列出怎样的方程呢?

  生:汇报,根据鸡脚数+兔脚数=26只能列出方程2X+4(8-X)=26根据26只脚-鸡脚数=兔脚数能列出26-2X=4(8-X)根据26只脚-兔脚数=鸡脚数能列出26-4(8-X)=2X。

  师:同学们看根据不同的数量关系我们能列出这么多的方程,但是同学们要注意用方程法解决问题时必须要找准数量关系。

  师:除了这两种方法,假设法有运用的吗?

  生:汇报。我们小组是把笼子里的动物都看做鸡。(板书:全看作鸡)

  生:我们是这样想的。假设笼子里都是鸡,应有脚8×2=16只,比实际少了26-16=10只,一只兔少算2只脚,列式为:4-2=2只,所以能算出共有兔10÷2=5只鸡就有8-5=3只。(生说师板书计算过程)

  师:这位同学说的你们听明白了吗?结合算式进行明理。明确每一步算式各表示什么意义。

  师:这种方法都明白了吗?结合课件图画进行解释质疑。

  师解释:刚才我们把笼子里的动物都看做鸡(课件图画上显示)那么笼子里共就应该有多少只脚?

  生:16只。

  师:实际上笼子里有26只脚,怎么会少了10只脚呢?(课件显示)

  生:每只兔子少算2只脚。

  师:一共少算10只脚,每只兔子少算2只脚,所以有5只兔子,3只鸡了。

  师:把笼子里的动物都看做鸡,你们会算了,要是把笼子里的动物都看做兔,(师板书:全看作兔)又该怎样思考呢?你能参照前面的方法自己试着做一做吗?

  生:试做。

  师:刚才已经假设都是兔的同学,再按假设全是鸡的情形算一算。

  生:练做。

  师:谁来说说假设全是兔该怎么算?

  生:假设笼子里都是兔,就应有脚8×4=32只,比实际多了32-26=6只。一只鸡多算2只脚,4-2=2只。就能算出共有鸡6÷2=3只。兔就有8-3=5只。(生说师板书计算过程。)

  师:你们也都算上了吗?师解释:要是都是兔的话,就有32只脚,而实际有26只脚,为什么会多出6只脚呢?(课件示)

  生:每只鸡多算2只脚。

  师:一共多算6只脚,每只鸡算2只,所以有3只鸡,5只兔。

  师:还有运用其他方法的吗?

  师:同学们看,通过上面的探究学习,我们共找到几种解决鸡兔同笼问题的方法?(三种)哪三种?(列表法,方程法,假设法)你们能说说这三种方法各有什么特点吗?

  生汇报:列表法适合于数据小的问题,数据大了就不适用了。

  方程法思路很简捷,但解方程比较麻烦。假设法,写起来简便,但思路很繁琐

  师:那以后我们再解决鸡兔同笼问题时就要根据具体情况灵活选择计算方法。

    三、巩固练习

  师:现在就请你来解决那道数据较大的问题你们能解决吗?

  生:独立解答后全班交流。

  师:哪位同学愿意说说你是怎么解决这个问题的?

  生:汇报不同的算法。(学生边汇报边把计算方法展示在实物展台上)

  师:刚才我们用自己的办法解决了这个问题,你们想知道古人是怎么解决这个问题的吗?我们一起来看一看。(课件示)

  师:古人的办法很巧妙吧?如果大家对这种解法感兴趣,课后可以再研究。

  师:在一千五百年前,我国的古人就发明出这么的数学问题,一直流传到现在,他们还想出那么巧妙地解决办法,为我们后人留下了宝贵的知识财富,你想对他们说点什么吗?

    四、全课总结

  师:通过这节课的学习你有什么收获?

  生:我学会用……方法解决“鸡兔同笼”问题。

  师:今天通过大家的自主探索,找到了多种解决“鸡兔同笼”问题的方法。方程法和假设法应用得都比较广泛。生活中我们还会遇到类似“鸡兔同笼”的问题,比如有些租船问题,钱币问题等。下节课我们就应用这些方法去解决那些实际问题。

  板书设计:

  鸡兔同笼

  列表法

  方程法假设法

  解:设有兔X只,鸡就有2(8-X)只。全看作鸡

  4X+2(8-X)=268×2=16(只)

  2X+16=2626-16=10(只)

  X=54-2=2(只)

  8-5=3(只)10÷2=5(只)

  答:有5只兔,3只鸡。8-5=3(只)

  26-4X=2(8-X)全看作兔

  26-2(8-X)=4X8×4=32(只)

  2X+4(8-X)=2632-26=6(只)

  26-2X=4(8-X)4-2=2(只)

  26-4(8-X)=2X6÷2=3(只)

  8-3=5(只)

小学数学《鸡兔同笼》教案篇3

    教学目标

  1、知识与技能:学会使用列表方法解决鸡兔同笼问题,了解使用假设解决鸡兔同笼问题的方法。

  2、过程与方法:在尝试和列表中经历探究与解决问题的过程,掌握分析解决问题的方法。

  3、情感态度与价值观:了解我国古代数学的光辉成就,增强民族自豪感;提高学生对数学的好奇心和求知欲;增强学数学的兴趣。

    学情分析

  对于鸡兔同笼问题,只有个别的学生在校外曾接触到会用方程法列式计算。大多数孩子不知道怎么解决,更不要说多种方法解决了。由于方程是学生五年级新接触的内容,所以大多孩子还不习惯用方程解决问题。学生不会主动想到列表。基于学生的情况,在课堂教学过程中通过引导学生自主探索,合作交流,逐步掌握用列表法解决问题的方法,并对假设的方法有进一步的认识,准备在第二节课体会方程法的优越性。

    重点难点

  教学重点:

  在尝试、分析中掌握鸡兔同笼问题的解决方法,体会解决问题策略的多样化,培养学生分析问题、解决问题的能力。

  教学难点:

  理解并掌握用列表法和假设法解决“鸡兔同笼”问题。

    教学过程

  活动1【导入】创设情境,引入课题

  1、今天老师带了一件小礼物,猜猜多少钱?猜对了就送给你?

  教师:这样漫无边际的猜测什么时候能猜到啊?你们不想问我点什么吗?

  生:在什么范围?老师告诉范围

  教师:刚才同学们每一次猜测实际都是一种假设,假设是解决问题的重要方法,许多发明创造都是以假设为基础的,假设有对有错,那错误的假设有没有价值呢?每一次假设都会帮我们排除一种错误,使我们离成功越来越近,只要不断尝试下去就会成功。今天我们就利用假设的方法共同研究一个有趣的问题,出示课件。学生一起读出课题。板书:鸡兔同笼

  2、师:你们听说过鸡兔同笼问题?你知道它出自哪吗?早在一千五百多年前,《孙子算经》中就记载着鸡兔同笼的问题,孙子算经共分三卷,(出示课件),你们知道鸡兔同笼问题记录在哪卷了吗?

  3、(课件出原题)读题

  师:那就让我们看看孙子算经中是如何记录这一趣题的。(出示课件)

  学生读体,并理解雉的意思,请一位同学译成现代文。

  设计意图】通过讲述《孙子算经》的历史,增强数学课堂的文化气息,让学生感受到我国数学文化的源远流长,激起学生研究数学问题的热情。

  师:哎呀,想想就头疼,那么多头挤在一起好乱啊,怎么解决呢?

  记得我们数学上一种方法,就是当问题复杂不便于研究时,我们可以先从简单的问题研究,待找到规律后再利用规律解决复杂问题,你们记起来了吗?这是什么思想啊/这是化繁为简的思想

  活动2【讲授】展示情境,尝试探究

  (一)出示情景,获取信息

  1、教师:那老师就把数换小点,看看这类问题有什么规律。

  课件出示:鸡兔同笼,从上面数,有8个头;从下面数,有26条腿。鸡和兔各有几只?

  【设计意图】为了便于分析和研究,学生也容易接受,将数目较大的数换成比较小的数,渗透化繁为简的数学思想。

  2、我们一起来看看被关在同一个笼子里的鸡和兔给我们带来了什么信息?

  学生汇报,教师选取有用的信息,进行板书。还隐含了什么信息呢?课件出示鸡腿和兔腿

  ①鸡和兔共8只。 ②鸡和兔共有26条腿。 ③鸡有2条腿。 ④兔有4条腿。

  (二)猜想验证,教授列表法。

  1、师:我们先来猜猜,笼子中可能会有几只鸡和几只兔?

  师:在猜测时,我们要抓住哪些条件?

  师:怎样才能确定同学们猜想对不还是错?那现在就把你们的猜想填在表格中。

  【设计意图】:培养学生检验的习惯

  2、学生汇报:

  1)、(假如有采用逐一列表法的)请一个采用逐一列表法解决的同学汇报,汇报讲出理由(你是如何确定第一组数据的,验证后发现了什么问题,怎样进行调整的也就是调整的方法),并且说一说调整过程中有什么发现?(因为鸡和兔的只数是固定的,每增加一只兔子减少一只鸡,腿的总只数就增加2.)

  还有哪些同学与他的方法相同或类似?补充说明理由和发现的规律。(贴出表格)

  你们认为这种方法有什么特点?请这些同学为他们的方法命名。(板书:逐一列表法)

  2)、哪个同学与他们的列表方法不同?(汇报,说出是如何确定第一组数据的,验证后发现了什么问题,你的调整策略,在调整过程中有什么发现?当计算验证腿数多时说明什么?应该怎样调整?相反呢?)

  还有那些同学与他的方法相同或类似(你是怎样想到这种方法的),补充调整方法和策略以及自己的发现。(贴出表格)

  种不同的列表(1)逐一列表(2)跳跃式列表(3)取中列表法

  4、师:像这样把所有的情况在表格中一一列举出来,我们把这种方法叫做列表法。(板书:列表法)

  (三)教授假设法

  1、假设全是鸡

  师:我们先看表格中左起的第一列,8和0是什么意思?

  师:那笼子里是不是全是鸡呢?

  生:不会

  出示课件

  师:可笑的是兔子非常淘气,它觉得鸡两条腿走路很可笑,于是就抬起了两条腿,也学鸡两条腿走路了,此时从下面看腿会发生什么变化呢?

  生:腿会减少

  师:为什么腿会少呢?

  生:因为是把里面的兔当成鸡来计算了,也就是把一只4条腿的兔当成一只2条腿的鸡来算,每只兔会少2条退。

  师;如果比原来总共少了8条退,你能知道有几只兔子了吗?

  生:4只

  师:好,现在我们把刚才假设的过程用算式表示出来。

  (课件出示:把一只兔当成一只鸡算,就少了两条腿。)

  师:假设笼子里全部是鸡,这时笼子里一共有几只脚呢?

  课件出示:8×2=16(条)。

  师:但实际是几条脚呢?(16条)与实际相比,脚的只数发生了什么变化?

  课件出示:比实际少26-16=10(条)

  师:为什么会少10条脚?少了的10只脚是谁的?

  课件出示:因为把兔当了鸡在算。一只兔当成一只鸡算少两条腿,把兔当成了鸡算就会少算10条腿,所以会少10条脚,这些脚是兔子的。

  师:兔子的只数应该怎么算?

  课件出示:兔有10÷2=5(只)

  师:那鸡有几只?

  课件出示:鸡有8-5=3(只)

  【设计意图】简单地提问,能引导学生的思考,帮助学生解题。以一问一答的形式开展,不仅能减低题目的难度,增强学生的自信心,而且还能提高学生思考问题的逻辑思维能力和口头表达能力。

  2、板演假设全是鸡的书写过程

  师:谁能根据我们刚才所讨论得出的信息,利用算式把这解题过程写出来?请同学们试试看。可以两人一组讨论完成。

  3、学生汇报,教师板演。

  假设笼子里全部是鸡

  总腿数:8×2=16(条)脚

  比实际腿数少:26-16=10(条)脚

  一只兔比一只鸡多:4-2=2(条)脚

  兔的只数:10÷2=5(只)

  鸡的只数:8-5=3(只)

  答:笼子里兔有5只,鸡有3只。

  4、师:我们到底算的对不对呢?怎么办呢?(回顾与反思的过程)

  (课件出示:3×2+5×4=26(条)脚,5+3=8(只)。

  师:我们再一起回顾一下我们是如何解决这个问题的。

  5、师:刚才我们假设笼子里全部是鸡的解题方法,我们叫做假设法。(板书:假设法)

  【设计意图】通过把解题思路的整理和归纳,向学生渗透什么是假设法,这样可以帮助学生更好的掌握和运用假设法解决问题。

  6、师:现在假设笼子里全部都是兔,你们会解决吗?

  (学生独立解题。指名板演。)

  7、板书:

  假设笼子里全部是兔总腿数:8×4=32(条)脚

  比实际腿数多32-26=6(条)脚

  一只兔比一只鸡多4-2=2(条)脚

  鸡的只数6÷2=3(只)

  兔的只数8-3=5(只)

  答:笼子兔有5只,鸡有3只。

  【设计意图】放手让学生尝试从另一个角度,利用假设法解题,这样不但可以加深与巩固对假设法的理解,而且能拓展学生的思维,让学生明白同一道题用同一种方法可以有不同的思路。

  8、小结:

  师:请同学们回忆一下,在解决鸡兔同笼问题时,用到了哪些方法?

  对比列表发法和假设法,你们觉得更喜欢哪种方法呢?(得出假设法更具一般性,列表发有局限性)

  活动3【活动】巩固新知,解决问题

  1、师:现在你有信心解决《孙子算经》里的问题吗?用你喜欢的一种方法来解题?(课件出示题目)

  2、自己独立完成后,在小组内交流,教师巡视。幻灯展示学生解题过程。

  3、课件出示“做一做”的第1题。

  师:我们的鸡兔同笼问题不仅在《孙子算经》中出现,也曾远渡重洋,传播到了日本,逐渐演变成了现在流传甚广的龟鹤问题出示课件,它和鸡兔同笼问题有什么联系呢?

  学生自己独立完成。展示学生作业,并让生说说思路。

  2、课件出示“做一做”的第2题。

  师:生活中随处可见鸡兔同笼问题,看看这道题又和鸡兔同笼问题有什么联系呢?他们不同之处在哪?

  新星小学“环保卫士”小分队12人参加植树活动。男同学每人栽了3棵树,女同学每人栽了2棵树,一共栽了32棵树。男、女同学各有几人?

  分析,解答,一个同学到黑板上来写。集体讲评

  【设计意图】拓宽学生的视野,使学生体会到“鸡兔同笼”问题在生活中的广泛应用,感受数学学习的价值,也让学生体会到数学就在我们身边。

  四、拓展延伸

  我们不同的方法解决了鸡兔同笼问题,你们知道古代人是如何解决的吗?

  出示课件,学生自己读一读,看了这段资料你有什么感受?

  感受古人的聪明,感受解题方法的多样化。

  【设计意图】现在的解题方法与古人创造的“抬腿法”相比较,引导学生对祖先赞美,同时渗透爱国主义思想教育,激发学生努力学习数学热情。

  活动4【作业】布置作业

  生活中有很多类似的问题,你能尝试着编一道吗?

  活动5【作业】总结收获

  师:这节课我们跨越了1500多年的历史,既探讨了中国古代的数学趣题,又解决了咱们身边的一些数学问题。通过这节课的学习,你有什么收获吗?

  师:你知道还有什么方法可以解决鸡兔同笼问题吗?

  生:方程的方法。

  教师:对,还有其他方法可以解决。下节课我们再来研究其他方法。今天数学作业是自己编一道生活中的鸡兔同笼问题。(出示课件)其实数学无处不在,只要同学们善于思考,大胆猜想,那么数学将会变得很美丽,你也会因思考而变得更有智慧。(出示课件)

  五、板书设计

小学数学《鸡兔同笼》教案篇4

    教学目标:

  1.认识和了解“鸡兔同笼”问题,初步掌握解决问题的策略与方法,体会解决问题策略的多样性。

  2.经历解决问题的过程中,学习和体会“枚举”、“假设”等数学思想和方法,提高解决实际问题的能力。在解决问题的过程中归纳概括出鸡兔同笼问题的数学模型,进一步培养学生的合作意识和逻辑推理能力。

  3.让学生感受古代数学问题的趣味性,受到祖国优秀数学文化的熏陶和感染,增强学习数学的乐趣。

    教学重点:

  会用假设法和方程法解答“鸡兔同笼”问题。

    教学难点:

  明白用假设法解决“鸡兔同笼”问题的算理。

    教学用具:

  多媒体课件。

    教学过程:

  一、创设情境,引入新课。

  1、引入:

  同学们,我们国家有着几千年的悠久文化,在我国古代更是产生了许多位数学家和许多部数学著作,《孙子算经》就是其中一部,大约产生于一千五百年前,书中记载着这样一道有名的数学趣题。你们想看一看吗?

  今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?把它翻译成现代汉语是:现在有一些鸡和兔被关在同一个笼子里。鸡和兔共有35个头,94只脚。鸡和兔各有多少只?

  这就是著名的“鸡兔同笼”问题,生活中类似的问题非常多,这类问题应如何解决呢?今天我们就来研究著名的“鸡兔同笼”问题。板书课题:“鸡兔同笼”。

  为便于研究,我们先从简单的生活问题入手,请看下面问题。

  ●学校买来50张电影票,一部分是4元一张的学生票,一部分是6元一张的成人票,总票价是260元。两种票各买来了多少张?

  【设计意图】以我国古代著名的鸡兔同笼问题引入,让学生感受我国悠久的数学文化,激起探知这类问题的兴趣。

  二、自主学习、小组探究

  对于这个问题你想用什么方法来解决呢?请根据提示思考解决问题的方案。

  温馨提示:

  ①用列举法怎样解决问题?

  ②你能用画图的方法解答吗?

  ③如果把这些票都看成学生票或都看成成人票如何解答?

  ④回顾列方程解决问题的经验,怎样用方程解决问题?

  学生自己根据提示用自己喜欢的方法解决问题。

  先把自己的想法在小组内说一说,再共同协商解决。

  教师巡视,要注意发现学生的不同解法,同时参与小组的指导。

  三、汇报交流,评价质疑

  对于解决这个问题,同学们一定有自己的好的方法,请把你的好办法同大家交流吧。

  1.列举法。

  可以有目的的先展示这种方法。(多媒体展示。)

  学生票数(张)成人票数(张)钱数(元)

  2525250

  2426252

  2327254

  2228256

  2129258

  2030260

  质疑:有50张票,是否有必要一一列举,你是如何列举的?

  (引导学生通常先从总数的中间数列举。)

  质疑:根据假设算出的钱数与实际总钱数不一样时,你是如何调整的?

  (引导学生根据数据特点确定调整方向、调整幅度。)

  师强调:像咱们这样,采用列表的方法列举出来,并最终找到答案的方法,在数学上叫列举法,也叫枚举法。(板书:枚举法)

  2.假设法

  (1)假设全是成人票:

  ①为了便于学生理解,展示假设为成人票,学生试画的分析图。(图略)

  ②引导:上面的过程如果用算式怎样表示呢?请同学们试试看。

  (学生试着列算式,请两个学生到黑板上去板演。)

  预设板演:

  50×6=300(元)300-260=40(元)40÷(6-4)=20(张)

  50-20=30(张)

  ③质疑:你这样做是如何想的?你是如何理解多出的40元的?根据多出的40元如何求出学生票和成人票的?

  预设回答:

  假设全是成人票,就50×6=300元,而实际花260元,这样就多出了300-260=40元。

  而1张学生票看做成人票就比1张学生票多2元,学生票的张数就是40÷(6-4)=20张了,成人票就是50-20=30张。

  (2)假设全是学生票:

  如果假设成全是学生票该如何解答?(学生根据刚才的经验独立解答,交流时重点说清推理思路。)

  总结方法归纳抽象出这类问题的模型。

  学生票数=(成人票价×总张数-总钱数)÷(成人票价-学生票价)。

  成人票数=(总钱数-学生票数×总张数)÷(成人票价-学生票价)。

  3、方程法:

  除了以上两种方法,还有别的计算方法了吗?

  学生汇报列方程的方法。

  (1)找出相等的数量关系。

  (学生汇报,课件出示:成人票数+学生票数=50;成人钱数+学生钱数=260

  元)

  (2)根据等量关系列式:

  设成人票有x张,则学生票有(50-x)张。

  列方程为:6x+4(50-x)=260

  (解略)

  4.学生比较以上几种方法解题方法。

  四、抽象概括,总结提升。

  让学生结合自己解决问题的经验,用自己的语言进行总结。

  列举法:适合数据比较简单的问题,但是如果数字比较大,这样一一列举法就太麻烦了。

  画图法:操作简单,比较直观。但数字大的时候,画图也是比较麻烦的。

  假设法:适合所有的这类问题,但比较抽象,不好理解。

  方程法:适用面广,便捷,容易理解。

  师:同学们,我们这节课研究“鸡兔同笼”问题,我们探讨出了用枚举法、假设法、解方程的方法解决这种题。只不过列举法对于数据较大时比较麻烦。一般我们采用假设法和解方程的方法比较简便。

  【设计意图】通过适时的总结,引领学生归纳建立“鸡兔同笼”问题的模型,及解决这类问题的一般方法和策略。

  五、巩固应用,拓展提高

  1.今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各有几何?(回应开课时的问题。)

  A。先让学生认真读题,(同桌讨论)。

  B。然后自己解决,汇报交流。交流时同时让学生感受中华民族悠久的数学文化。

  2.王丽有20张5元和2元的人民币,一共是82元。5元和2元的人民币各有多少张?

  处理方法:

  ①学生认真读题,引导学生对比“鸡兔同笼”问题模型,分析数量关系,然后选择合适的方法独立解答。

  ②小组内交流算法。

  ③全班交流。

  【设计意图】本题是“鸡兔同笼”问题模型,在现实生活中的应用,鼓励学生用自己喜欢的方法解答。进一步巩固“鸡兔同笼”问题的各种解法,培养学生的实践应用能力。

  3、巩固练习:回应解决例题,引导学生用合适的方法计算。然后说一说在我们的生活中有类似鸡兔同笼的问题吗?(龟鹤问题、乘船问题、合作植树问题等)

  【设计意图】让学生寻找生活中的鸡兔同笼问题,使学生感受到“鸡兔同笼”问题在生活中的广泛应用。

  3、全课小结:

  回顾总结,引发思考

  本节课,我们在解决“鸡兔同笼”问题时,采用了几种策略,在这节课中,我发现同学们还有其他的解决方法,下课后相互交流一下,并尝试一下。

  师总结:

  这节课大家共同探究,解决了生活中类似“鸡兔同笼”问题的实际问题。只要我们善于动脑,好多问题都可以归为一类问题,抽象出一个总的模型进行解决。

小学数学《鸡兔同笼》教案篇5

  知识与技能:通过复习“鸡兔同笼”问题,感受中国古代数学问题的趣味性。

  过程与方法:能熟练用列表、假设等不同的方法解决“鸡兔同笼”问题,体验解决问题的方法的多样性,提高解决实际问题的能力。

  情感态度价值观:通过复习,培养学生的合作意识和逻辑推理能力,在解决问题的过程中,提高迁移思维的能力,进而体会数学的价值。

  熟练理解和掌握解决问题的不同思路和方法,让学生再一次亲历列表法、假设法等解题的过程,深刻体会解决问题的一般性策略。

  建构解决“鸡兔同笼”问题的数学模型,运用学到的解题策略熟练解决生活中的实际问题。教具学具:多媒体

    一、情境导入

  师:“鸡兔同笼”是一道有名的中国古算题。最早出现在《孙子算经》中。许多小数数学问题都可以转化成这类问题。

  师:你知道解决“鸡兔同笼”问题有几种方法吗?通过比较发现它们有什么特点?

  生1:列表法,适合数据较小的问题。

  生2:假设法,一般情况都适合,数量关系比较容易理解。

  师:今天我们复习“鸡兔同笼”问题。

    二、自主探究

  师:摆三角形和正方形一共用了19根小棒。(任意两个图形之间没有公共边)你能算出分别摆了多少个三角形和多少个正方形吗?(学生回答)

  师:星期日,小英一家八口人到博物馆参观,博物馆的票价是成人每人30元,儿童每人15元,买门票共花去210元钱,其中儿童有几人?(学生回答)

  师:三年级(4)班48人去北海公园划船,租了大船和小船共10条,每6人克坐满一条大船,每4人可坐满一条小船,且每条船都没有空位,他们租大船和小船各几条?(学生回答)

    三、探究结果汇报

  师:通过复习“鸡兔同笼”问题,你有哪些收获?

  生1:借助列表的。方法,解决简单的实际问题。

  生2:我学会了化繁为简的学习方法。

  生3:用“假设”法解决问题的一般性。

    四、师生总结收获

  师:通过本课的学习,你有哪些收获?

  师生总结得出:解决数学问题时,可以先提出假设,如果假设后的情况与实际不符,这时就需要进行调整。我们可以借助画图、列表等方法帮助我们进行调整,从而推算出正确结果,最后还要对结果进行检验。(逐一板书:假设、调整、检验)

  板书设计

  鸡兔同笼假设→调整(列表、画图)→检验

小学数学《鸡兔同笼》教案篇6

  1、通过学习使学生初步认识“鸡兔同笼”的数学趣题,能尝试用多种策略解答数目比较小的此类题目。

  2、通过学习使学生在不断的试误中,运用“列表举例” “假设法”“解方程法”等方法解决鸡兔同笼问题,逐步形成良好的数学意识,体验尝试法解决数学问题的思想和方法。

  3、在学习我国传统的数学文化的过程中,了解与此有关的数学史,对学生进行数学文化的熏陶和感染。

  让学生经历用不同的方法解决“鸡兔同笼”问题的策略,体会其中所蕴涵的数学思想方法。

  理解假设法中各步的算理

    教具准备:

  一、创设情境,揭示课题。

  1、(出示图片)谈话:同学们屏幕上的两个动物你们认识吗?你能用数学语言描述一下这两个动物吗?

  2、如果把它们放在一个笼子里只告诉你头的个数与脚的只数,你能猜出笼子里各有多少只吗?

  告诉学生头的个数和腿的条数让学生猜测笼子里面动物的只数,然后用电子笔移开笼子进行验证。

  3、揭示课题并板书:鸡兔同笼

  二、展示情境,尝试探究。

  (一)出示情境,获取信息。

  1、出示例1:笼子里有若干只鸡和兔,从上面数,有8个头,从下面数有26条腿,鸡和兔名有几只?

  2、仔细读题,说说你了解了哪些信息?

  (二)猜想验证

  1、谈话:同学们,对于这道题,还能像刚才那样直接猜测吗?为了能把所有的猜测一一列出来,我为大家准备了一个表格(出示表格),与学生一起列出所有的可能。

  3、怎样才能知道同学们的猜测对不对?

  3、和同学们一起验证并完成表格最后一栏的填写,找出正确答案并圈起来。

  4、小结:我们这种方法叫做列表法。

  5、如果现在有更多的鸡和兔你们觉得用这种列表法还可以吗?为什么?

  (三)尝试假设法

  1、为了研究老师想请8位同学们配合老师。(请8位同学上台来扮演鸡和兔当老师下令所有的兔子抬起两条腿时,扮演兔子的同学把两只手举起来,计算地上腿的条数,与实际相差了多少条腿,相差的这些腿是谁的?)

  2、引导学生把刚才的表演过程用画图的方法呈现出来。

  3、引导学生把画图的过程用算式表示出来。

  5、小结:刚才我们假设都是鸡或者是兔,把这种方法叫做假设法。

  (四)列方程解

  1、在解决鸡兔同笼问题时除了列表法和假设法,还有别的方法吗?

  2、要用列方程必须找到等量关系式,请大家认真读题找出等量关系式。

  3、引导学生列出方程。

  4、板演解方程的过程。

  三、巩固练习

  1、解决《孙子算经》中的原题。

  (1)学生理解题意。

  (2)用自己最喜欢的方法解决。

  (3)集体订正。

  2、完成书中做一做。

  (1)小组讨论题里的什么相当于鸡,什么相当于兔?

  (2)用自己喜欢的方式解决。

小学数学《鸡兔同笼》教案篇7

  2、通过自主探究、合作交流,让学生经历用不同的方法(列表举例、作图分析、假设法)解决“鸡兔同笼”问题的过程,明确数量关系。

  一、历史激趣,导入新课(3分)

  导语:老师早就听说我们班的同学最喜欢看书,最善于思考,今天老师给同学们带来了一部一千五百年前的数学名著《孙子算经》(课件出示古书动画打开书出现原题),在这里记载着许多有趣的数学名题,其中有这样一道题请看:今有雉兔同笼,上有三十五头下有九十四足,问雉兔各几何?

  这句话中,你们有不明白的词语吗?谁来说一说,这道题目是什么意思?谁能用现代文翻译一下:(这道题目是说,现在有一些野鸡和兔子,关在同一只笼子里,从上面看,共有35个头;从下面看,共有94只脚。问有多少只野鸡、多少只兔子。)

  师:古代人对这样的题目有着自己独道的见解,我们把类似于这样的问题,统称为:“鸡兔同笼”。今天,我们就来研究中国历史上著名的数学趣题 “鸡兔同笼问题”。(板书课题:鸡兔同笼)

  2、我们先从简单一些的问题入手,来探讨解决这类问题的方法。

  【设计意图:这一引入,给数学课堂带来了浓厚的文化气息,让我们的学生感受到我国数学文化的源远流长,激发了学生的学习热情。】

  二、合作探究,构建新知(15分)

  1、请同学们看一幅鸡兔同笼的情景图(课件出示)你能猜出这笼子里有几只鸡和几只兔吗?

  请看题目,鸡兔同笼,有20个头,54条腿,鸡、兔各有多少只?你从中发现了哪些数学信息?这道题里还有隐藏的数学信息吗?

  2、先猜一猜,可能只有一种动物吗,为什么?

  3、独立思考:

  鸡兔可能各有多少只?你想怎样解决这个问题呢?

  找几名同学说一说解决的办法。

  同学们可以借助表格清晰明了的呈现出你的解题方法,如果有其他解题方法,请写在答题纸上。

  【设计意图:尊重教材;不束缚限制任何学生的思维,养成专注倾听的习惯拓宽学生思路,留给学生独立思考的空间,倡导用多种方法解决问题。】

  4、学生独立完成,教师巡视。

  5、学生汇报:

  还有哪些同学与他的方法相同或类似?补充说明理由和发现的规律。(课件贴出表格)

  还有那些同学与他的方法相同或类似(你是怎样想到这种方法的),补充调整方法和策略以及自己的发现。(课件贴出表格)

  请同学们为自己的方法命名。问:你们觉得这种方法怎么样?(简便、快捷)

  (板书:跳跃列表法)

  3)、哪个同学还有不同的列表方法呢?你是怎样想到这种列表法的(说出理由)

  还有那些同学与他的方法相同或类似,你们认为这种方法有什么优势?请同学们命名。(课件贴出表格)

  ( 板书:取中列表法。)

  4)、回顾一下我们的解题思路和方法。(相机板书:猜测、验证、调整)

  师:用列表法解决问题,要想做到又快又准确,你们认为应该要注意些什么

  问题?

  5)、同学们还有其他的方法解决这道题吗?

  直观画图法:谁听懂他的方法了?能再说说吗?你觉得这样做怎么样? (画图的方法非常便于观察、非常容易理解。) 还有什么方法吗?

  6)算术法启发学生思考;展示学生的个性解法并以学生的名字来命名。

  初步小结:同学们,刚才我们用很多方法解决了同一个问题,你觉得这些方法的核心思想是什么?(假设。所以鸡兔同笼问题又叫假设问题。)

  【设计意图:在问题情境中探究解决问题的方法,给学生足够的空间经历数学知识的形成过程,体验猜测—验证—调整—再验证—再调整的过程,从而得到解决鸡兔同笼问题的一般策略。】

  三、历史激趣、巩固新知(9分)

  同学们,你们知道古人是如何解答鸡兔同笼问题的吗?刚才的题目(出示):今有雉兔同笼,上有三十五头,下有九十四足。问雉、兔各几何? 书中给出了一种巧妙的解法,今译为:

  94÷2-35=12(头)

  兔的头数

  35-12=23(头)

  鸡的头数 这就是最早的鸡兔同笼问题。

  看了这段资料,你有什么想法,你有什么想说的吗?

  (为我们的祖先感到骄傲,其实老师也为你们感到骄傲,)你们在这么短的时间

  内就想出了这么多解决问题的办法,你们很了不起! 。

  过渡语:同学们有信心运用自己喜欢的列表方法解决1500多年前《孙 子 算经》中的原题吗?出示:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何? 学生汇报:

  你采用的是那种列表方法

  为什么要选用这种列表方法?

  谁有不同的列表方法?同学们有什么新发现

  (学生汇报后,教师追问:就这道题而言,你认为哪种方法解决最好?)日本人说的【设计意图:史书解题方法意在进行爱国主义教育,激励学生;解决原题巩固一道基本题型,进行解决问题方法的优化,对于数目较大的题目采用取中或跳跃列举法更为合适。】

  四、分析应用,提高升华(5分)

  过渡语:后来鸡兔同笼问题由我国传到了日本变成了龟鹤问题,日本人说的龟鹤和我们说的鸡兔有联系吗?抓住数学的本质,这里的鸡不仅仅代表鸡,这里的兔也不仅仅代表兔,那还可能是什么问题呢到我们的实际生活中去看一看,请看题;(课件)

  【设计意图:学数学用数学,引领学生抓住数学的本质,学习鸡兔同笼问题并非单纯解决鸡兔同笼问题,分析两道生活中的鸡兔同笼问题,目的在于进一步明确类似鸡兔同笼问题的数量关系,为解决问题垫定基础。】

  1、在我们日常生活消费中的鸡兔同笼问题,那么它与鸡兔同笼问题有什么联系:

  全班38人去游湖,共租8条船,每条船都坐满了,大船限坐6人小船限坐4人,大船、小船各租了几条?

  (生:4人相当于鸡的两条腿,8人相当于兔的四条腿, 8条船相当于鸡兔的总头数,38人相当于腿的总条数;)

  2、在活动安排中的鸡兔同笼问题,那么它与鸡兔同笼问题有什么联系:

  新星小学“环保额、卫士”小分队12人参加植树活动,男同学每人植树3棵,女同学每人植树2棵,一共植树32棵,男女同学各多少人?

  实践应用,解决问题

  3、重解《孙子算经》中的鸡兔同笼问题(5分)

  尝试运用你喜欢的方法独立完成此题

  学生汇报:

  【设计意图:此练习题的出示目的是使学生发现问题,解决问题,并且明确逐一列举法的有势好处。】

  五、生活拓展、谈谈收获(3分)

  生活中随处可见鸡兔同笼问题,愿意告诉老师这节课你的学习收获吗? 作业:创编一道生活中的鸡兔同笼问题。(要求:在小组里交流一下创编得体是否正确合理,同桌交换解决。)

  【设计意图:希望同学们留意生活中的数学问题,体会数学的价值。】

  结束语:数学无处不在,我相信同学们只要敢于猜测尝试、并且不断的实践验证、调整创新,任何问题都能迎刃而解。

  板书设计:

  猜测

  验证

  调整

  逐一列举法

  跳跃列举法

  取中列举法

  直观画图法

  假设算术法

  假设方程法

小学数学《鸡兔同笼》教案篇8

    教学内容:

  人教版《数学》四年级下册P103——P104页数学广角——《鸡兔同笼》。

    教材分析:

  “鸡兔同笼”问题是我国民间广为流传的有趣的数学问题,最早出现在《孙子算经》中。教材在本单元安排“鸡兔同笼”问题,一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。对于四年级的学生来说,解决“鸡兔同笼”问题最好的方法是列表法或假设法。“假设法”有利于培养学生的逻辑推理能力,列表法可以让学生经历猜测、验证等解决问题的基本策略。通过两种方法的探究让学生感知解决问题的多样性。因此在解决“鸡兔同笼”问题时,学生选用哪种方法均可,不强求用某一种方法。

  1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

  2、经历自主探究解决问题的过程,能够用列表、假设的方法解决“鸡兔同笼”问题,使学生感知解决问题的多样性。

  3、在解决问题的过程中,培养学生的逻辑推理能力,增强应用意识和实践能力。

  1、理解掌握解决问题的不同思路和方法。

  2、学会用不同的方法解决实际生活中有关“鸡兔同笼”的问题。

    教学具准备:

  表格

    一、导入

  师生谈话导入新知

  (设计理念:通过谈话营造轻松的学习环境,同时引出课题,让学生感知我国古代数学文化的源远流长激发学生的民族自豪感;通过谈话引出问题为下一教学环节做好铺垫。)

    二、探究新知

  1、质疑:提问:

  (1)一只鸡和一只兔不看外表单从数量上看有什么相同点和不同点?

  (2)鸡和兔相比:什么比什么多?多多少?

  (3)出示:如果有4只兔和3只鸡同笼,一共有多少个头和多少只脚呢?

  (4)尝试解决,交流想法;

  (5)出示交换已知条件以后的题目。

  (设计理念:通过对比两种动物的异同,引出基础题目,让学生经历观察、比较、分析、归纳概括的过程,同时也让学生了解鸡兔腿数数量的差别,每只兔比每只鸡腿数多2,这为下一教学环节,猜测、调整和有序整理探究列表法奠定基础,同时也为探究假设法做好铺垫。)

  2、教学例1

  (1)出示例题1.

  师:请同学们读一读,和前面的题目一样吗?什么地方不一样?

  请同学们大胆的猜一猜鸡兔各有几只?猜的时候要注意什么?(共有8个头)

  (设计理念:通过对比两题的已知和未知条件的不同培养学生认真审题的良好学习习惯,同时也为后面的猜测、有序整理、验证做好铺垫。)

  (2)学生自由猜测。

  师:大家的猜测有很多种,听起来有点乱,我们按顺序整理一下(出示表格)。

  (3)验证猜想。

  (4)观察发现规律。

  (5)总结概括:在数学中这种方法叫列表法。(板书)。

  (设计理念:通过猜测让学生感知在解决类似问题时这是最基础的方法,然后通过列表法进行验证让学生感知有序整理可以找到问题的答案。最后通过观察、交流探讨发现鸡兔数量的变化引起腿数变化的规律,这样也积累了学生解决问题的经验。)

  质疑:如果遇到鸡兔数目多的时候,这种方法行吗?怎么办呢?

  3、探讨假设法:

  a、假设全是兔。

  1师以童话故事的形式引入全是兔的情境。

  2集体探究,引导交流。

  b、假设全是鸡。

  1师再次继续童话故事引入全是鸡的情境。

  2小组独立探究交流假设全是鸡的计算方法。

  3指名小组展示并叙述计算过程。

  4小结:刚才我们假设都是鸡或都是兔,所以把这种方法叫做假设法。(板书:假设法)

  5延伸:其实解决“鸡兔同笼”的问题还有其它方法,同学们如果有兴趣的话下来以后可以了解一下。

  (设计理念:通过情境假设,让学生感知数学的趣味性,提高了学生探究新知的兴趣,也为假设法的探究增添了趣味。同时,学生又经历了自主探究、合作交流的学习过程,体验了解决问题的方法的多样性。为后面灵活的解决问题打下了基础。)

    三、练习巩固

  出示练习题。

    四、课后总结

  (设计理念:学生通过练习一方面加强了对列表法、假设法的巩固,另一方面学生运用所学知识灵活的解决问题,增强了学生的应用意识;通过小结收获整理课堂新知,培养学生归纳总结的能力。)

  板书

  1、列表法

  2、假设法

小学数学《鸡兔同笼》教案篇9

  数学北师大版五年级上册第五单元尝试与猜测第一课时《鸡兔同笼》教材80~81页

  1、了解鸡兔同笼问题,掌握用尝试法、假设法解决问题,初步形成解决此类问题的一般性策略。

  2、通过自主探究、合作交流,让学生经历用不同的列表方法解决“鸡兔同笼”问题的过程,明确数量关系。

  明确鸡兔同笼问题数量关系。

  初步形成解决此类问题的一般性。

  一、历史激趣,导入新课

  1、导语:老师知道我们班的同学非常喜欢读书,今天老师给同学们带来一部1500年前的数学名著《孙子算经》(课件出示古书动画打开书出现原题),里面记载着许多有趣的数学名题,其中有这样一道题请看:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?(师读,课件中标注出题目中的“雉”:(读成“zhì”)野鸡;几何:多少。) 师:谁知道,这道题目是什么意思?

  师:是呀,这道题目是说,现在有一些野鸡和兔子,关在同一只笼子里,从上面看,共有35个头;从下面看,共有94只脚。问有多少只野鸡、多少只兔子。

  师:古代人对这样的题目有着自己独到的见解,我们把类似于这样的问题,统统称为:“鸡兔同笼”。今天,我们就来研究中国历史上著名的数学趣题 “鸡兔同笼问题”。板书课题。(板书:鸡兔同笼)

  2、我们先从简单一些的问题入手,来探讨解决这类问题的方法,好吗?大家请看屏幕。出示题目: (鸡兔同笼问题,课件出示鸡兔同笼情境图)

  二、主动探究、合作交流、学习新知:

  1.师:请大家自由读题,你们都知道了什么信息?

  生:鸡和兔一共有20个头。鸡兔一共有54条腿。求分别有几只?

  师:还有补充吗?有两个隐藏条件看谁细心发现了?。

  生:鸡有2条腿,兔子有4条腿。鸡和兔一共有20个头。鸡兔一共有54条腿。求分别有几只?

  师评:他还发现了隐藏条件,审题真细心。

  2.先猜一猜,鸡兔可能有几只?可能只有一种动物吗,为什么?

  学生猜测,汇报。不可能都是鸡,因为如果都是鸡就会有40条腿,而题目中是54条腿。也不可能都是兔,因为如果都是兔就会有80条腿。

  3.独立思考:

  (1)你想怎样解决这个问题?生举手,师:不着急说,先自己想一想!学生静想10秒。

  (2)师:你们愿意自己独立解决这个问题,还是我教给你们方法你们做?好,那就请你们小组合作交流,在小组长的带领下,用自己喜欢的方法来解决这个问题。比一比,看看那个组想出的办法多,方法巧。 学生合作,教师巡视指导。

  4、汇报:(汇报时,师生、生生质疑,评价)

  A、师:谁愿意展示你的方法?

  (1)列表法: ①逐一列表法

  小组1:我们采用列表法得出的答案。(实物投影展示小组的成果)

  师:学生说出“1只鸡,19只兔子”,问“怎样计算出的腿数?”1×2+19×4=2+76=78 问“结果就是13只鸡,7只兔子吗?怎样可以知道这个结果是正确的?” 是的,可以用算式来验证:13×2+7×4=26+28=54(条)

  师:谁和他的方法一样?能再讲讲吗?

  师:追问“有些同学在填表时写出的腿数特别快,让我们采访一下有什么秘诀?” (因为鸡和兔的只数是固定的,每增加一只兔子减少一只鸡,腿的总只数就增加2.反之依然,所以列表列得特别快。)

  师:评价“像你们这样,采用列表的方法,不重复、不遗漏的写出所有可能的答案。这种逐一列举的方法在数学中也称为“枚举法”(板书)

  小结:逐一列表法虽然比较麻烦,但是不重复不遗漏;

  师:除了像他们这样逐一列举,还有不同的列表方法吗?

  ②跳跃列表

  请小幅度跳跃列表的同学汇报;(汇报,说出是如何确定第一组数据的?计算验证后发现了什么问题?如何调整的谁还有不同的调整策略?) 问:你们觉得这种方法怎么样?(简便、快捷)

  请大幅度跳跃列表同学汇报(你是怎样想到把鸡或兔的只数从 只一下调整到 只的) 请大或小幅度调整与逐一相结合的汇报(重点追问:你每一步是怎样进行调整的?根据什么进行调整的?)

  小结:列表过程中根据需要我们可以有规律的小幅度跳跃,也可以根据自己的发现大幅度的跳跃;(板书跳跃) ③取中列表法

  请选用取中列举法的同学汇报?追问:你是怎样想到这种列表法的(说出理由)

  还有那些同学与他的方法相同或类似,你们认为这种方法有什么优势?

  小结:取中列举法在逐一和跳跃的基础上直取中间数,验证后调整幅度缩小更为简便快捷(板书取中)

  (2)、回顾一下我们的解题思路和方法,首先根据已知信息进行尝试猜测,然后进行计算验证,分析后进行合理调整。(相机板书:猜测、验证、调整)

  (3)你最喜欢那种列表方法?理由呢?

  (4)、同学们还有其他的方法解决这道题吗?

  直观画图法:大家明白了吗?你觉得这种解法怎么样?

  小结:画图的方法非常直观便于观察、非常容易理解。

  (5)、同学们还有具有独特个性的解法吗?可以用自己的名字命名汇报。

  过渡:你们在这么短的时间内就想出了这么多解决鸡兔同笼问题的方法,你们很了不起。

    三、方法应用,巩固新知

  师:同学们,能用你喜欢的列表方法来解决一些问题吗?

  1、鸡兔同笼,有17个头,42条腿,鸡、兔各多少只? 抓住数学的本质,这里的鸡不仅仅代表鸡,这里的兔也不仅仅代表兔,运用我们所学的方法来解决一些生活中的鸡兔同笼问题,

  2、在我们的生活中所遇到的一些问题,与鸡兔同笼问题有什么联系呢? 小明的储蓄罐里有1角和5角的硬币共27枚,价值元,1角和5角的硬币各有多少枚?

  3、运输中的鸡兔同笼问题

  用大小卡车往城市运29吨蔬菜,大卡车每辆每次运5吨,小卡车每辆每次运3吨,大小卡车各用几辆能一次运完?

  尝试运用你喜欢的方法独立完成此题 学生汇报:

  你采用的是那种列表方法 为什么要选用这种列表方法?

  谁有不同的列表方法?

  1)、(如分别出现两种不同的正确答案)两种答案都正确吗?那么用什么方法能使所有的正确答案都不遗漏呢?师生集体尝试逐一列表的方法。

  就这道题而言,你认为它与鸡兔同笼问题有什么联系?不同之处呢?(没有限定大小卡车的总辆数)

  哪种方法解决最好? 或

  2)、(如出现一名同学有两个正确答案和分别一个正确答案)你认为谁的方法更好?

  过渡语:老师相信同学们一定会耐心细致的做每一件事请。

    四、总结全课交流收获

  生活中随处可见鸡兔同笼问题,愿意告诉老师这节课你的学习收获吗 结束语:数学自古以来是中国历史上的璀璨明珠,在我们的生活中更是无处不在,我相信同学们只要敢于猜测尝试、并且不断的实践验证、调整创新,任何问题都能迎刃而解。

    五、板书设计:

  列表法 思路

  逐一 猜测

  跳跃 验证

  取中 调整

小学数学《鸡兔同笼》教案篇10

  1.知识与技能目标:通过学习,让学生掌握用图示法、列方程法、假设法解决“鸡兔同笼”问题,让学生体验解决问题的多样性,并能用这些方法解决生活中类似“鸡兔同笼”的问题。感受古代数学问题的趣味性和解法的巧妙性。

  2.过程与方法目标:学会在学习中进行尝试。比较。分析,培养解决问题的能力,并在解决问题的过程中培养学生的合作意识和逻辑推理能力。

  3.情感与价值目标。了解我国古代数学研究成果,增强明族自豪感。

  尝试用不同的方法解决“鸡兔同笼”问题。

  在解决问题的过程中培养学生的逻辑推理能力。

  圆形纸片、小棒若干小黑板图片

    一、谜语激趣,导入新课

  1.出示谜语卡片。(目的是激发学生学习兴趣问题的欲望,同时引出课题)

  顶上红冠戴红红眼睛白白毛

  身披五彩衣长长耳朵短尾巴

  能测天亮时身披一件白皮袄

  呼得众人醒走起路来轻轻跳

  (猜一动物)(猜一动物)

  老师根据学生的回答,先后在黑板上出示鸡和兔的图片。

  2.板书课题:鸡兔同笼。

  3.用数学语言描述一下鸡和兔各有什么特征。(目的是为后面的教学做铺垫)

  (预设:鸡和兔各有一个头,鸡有两只脚,两只翅膀,兔子有四只脚。)

    二、合作讨论,探究新知

  1.出示例1:笼子里有若干只鸡和兔。从上面数,有8个头,从下面数,有26只脚。鸡和兔各有几只?(小黑板)(“鸡兔同笼”的原题数据比较大,不利于首次接触该类问题的学生进行探究,因此我第一次出示的尝试题把原题中的数据改小了,这样有利于激起学生的学习兴趣,能充分照顾到不同层次的学生,让学生主动参与进来。)

  2.从题目中你们能发现什么数学信息?(捕捉隐含信息)(目的是引导学生理解题意:鸡和兔共8只,鸡和兔共有26条腿,同时捕捉隐含信息:鸡有2条腿,兔有4条腿。)

  3.独立思考:(培养学生独立解决问题的能力。)

  4.小组讨论探究。(老师参与其中,启发、点拔,师生互动。)(针对六年级的学生年龄特点和心理特征,以及他们现在的知识水平,采用启发式,小组合作等教学方法,让尽可能多的学生主动参与到学习过程中。在师生互动中让每个学生都动口、动手、动脑,腾出足够的时空和自由度使学生成为课堂的主人,使每个学生的学习都能有体验、有收获、有感想。目的是激发学生的探索欲望,让学生在小组讨论交流中弄清“鸡兔同笼”问题的结构特征和解题策略,亲历多样化解题的过程,初步形成解决此类问题的一般性策略。)

  5.学生汇报探究的方法和结论。

  预设以下几种方法:(根据时间而讲解其中的二至三种方法)(这种设计有一定的伸缩性,教师可以灵活把握。)

  (1)用方程解

  解:设兔有X只,那么鸡有(8-X)只。

  4X+2(8-X)=26

  16+2X=26

  2X=26-16

  X=5

  8-5=3(只)

  即鸡有3只,兔有5只。

  引导学生口头检验

  (2)形象生动,讲解假设法

  ①、假设全是鸡一共就有8×2=16条腿。实际有26条腿,这样笼子里就少了26-16=10条腿,为什么会少了10条腿呢?(把兔当了鸡在算。每只兔少算两条腿,那把几只兔当成了鸡算就会少算10条腿呢?就看10里面有几个2就是把几只兔当成了鸡来算)10÷2=5就是兔的只数,8-5=3(只)鸡

  ②、思考:假设笼子里都是兔该怎样求?

  同桌口头完成。

  小结:刚才我们假设都是鸡或都是兔,所以把这种方法叫做假设法。(板书:假设法)

  (3)列表法。

  出示图表:(小黑板)

  学生反馈填表过程,说明从中发现的规律。

小学数学《鸡兔同笼》教案篇11

    一、揭示课题

  1、师:同学们今天老师将和大家一起来学习一道我国古代非常有名的数学趣题,“今有雏兔同笼,上有三十五头,下有九十四足,问雏兔各几何?”(PPT投影展示原题)这四句话是什么意思呢?抽生回答。(笼子里有若干只鸡和兔,从上面数,有35个头;从下面数,有94只脚。鸡和兔各有几只?(PPT展示今意))

  2、有谁知道这类题我们把它叫做什么问题吗?(鸡兔同笼)板书。鸡兔同笼问题是我国古代三大趣题之一,记载于《孙子算经》一书中,距今已有1500多年,

  3、听说过“鸡兔同笼”吗?在那听说的?(奥数班上)会做的我们今天进一步来学习,不会的也没关系,通过这节课的学习你老师相信今后你一定会做了。那同学们有没有信心把这节课的内容学好呢?

    二、合作探索,主动构建。

  1.出示例1

  为便于研究,我们可先从简单问题入手,把题中的“35个头”和“94只脚”分别换成“8个头”和“26只脚”,就变成了例1:笼子里有若干只鸡兔。从上面数,有8个头,从下面数,有26只脚,鸡和兔各有几只?

  2.理解题意

  师:“从上面数,有8个头;从下面数,有26只脚”分别是什么意思?

  3.探索策略

  (1)猜想法

  学生通过猜想、验证,知道了在这个笼子里一共有3只鸡、5只兔,师:猜想法也是咱们数学解决问题时常用的一种解题方法,但是在几次猜想中,只有1次猜对了,你们觉得用猜想法解决鸡兔同笼问题好不好?

  (2)列表法

  师:刚才,我们是在随意猜,其实还可以有顺序的来猜。(课件出示书上的空白表格)

  师:如果先猜有8只鸡和0只兔,就有多少只脚?再猜有7只鸡和1只兔,就有多少只脚?如果有6只鸡呢?下面该写有几只鸡了?很好,按照这样的顺序猜下去就可以猜出来。请同学们完成书上的表格。(生独立完成)

  师:看,我们用按顺序列表的方法,一眼就可以看出一共有3只鸡、5只兔,也就是用列表法解决了这个问题。(板书)请仔细观察表格,你能发现什么?把你的发现和同座交流。谁愿意把你的发现跟大伙说说?

  生:在鸡和兔的总只数不变的情况下,每增加1只兔、减少1只鸡,脚的总只数增加2只。

  师:是这样的吗?我们一起来看看。为什么会这样呢?(因为1只鸡有2只脚,1只兔有4只脚,把1只鸡换成1只兔后就多出了2只脚)还有什么发现?(每减少1只兔,增加1只鸡,脚的总只数减少2只。)

  师:刚才我们用列表法解决了这个问题,你们觉得用列表法解决鸡兔同笼问题好吗?(当头和脚的只数较多时,用列表法还是不容易找出答案,我们还有研究新方法的必要。) (3)假设法 ①假设全是鸡

  师:我们先观察表格中左起的第一列,8和0是什么意思?得到的16又是什么呢?

  哦,也就是假设笼子里全是鸡(板书:假设笼子里都是鸡),那么就只有16只脚,对不对?可是实际脚的只数是26只,比16只要多10只,为什么会多10只呢?那会有几只兔子呢?(5只)为什么?有没有同学能用画图的方法把这个过程演示出来呀?在咱们数学的学习过程中,许多抽象的、难以理解的问题,一旦转化为直观的图形之后,就要容易理解多了,对不对?恩,希望同学们在今后的学习中能灵活地运用这种画图的方法来解决问题。

  刚才我们用语言所表述的过程、用画图的方法所展示的过程,你能用算式表示出来吗?(生说师写:2×8=16只,26-16=10只,4-2=2(只),10÷2=5只,8-5=3只)很好,请你给大家解释一下这五个算式的意思好吗?

  ②假设全是兔刚才我们用假设全是鸡的办法解决了这个问题,那么如果假设全是兔又应该怎么分析和解决这个问题呢?请同学们自己试着做一做。(关注学生画图和列式的情况)请一生画图、一生列式,并叙述想法。

  小结:刚才我们在列表的基础上,想到了两种算术方法。回头看看这两种方法的第一步,一个假设全是鸡,另一个假设全是兔,我们给这两种方法起个名字吧。(板书:假设法)我们都认为猜想法和列表法有局限性,假设法还有局限性吗?(没有)

  (4)代数法

  师:在解决鸡兔同笼问题时,除了假设法没有局限性外,你还能想到别的也没有局限性的一般方法吗?(方程的方法)那么就请同学们用列方程的方法试一试。(全班尝试,一名学生板演。)我们来听听这个同学的想法。

  师:列方程的解法还有个名字也就叫代数法(板书)。

  4.小结方法

  师:请同学们回忆一下,在解决鸡兔同笼问题时,用到了哪些方法?(猜想法,列表法,假设法和代数法)要你们解决《孙子算经》中原题,你现在会选用哪种方法呢?为什么?(假设法比较简便,代数法也好理解)恩,两种方法都可以,下面同学们就用自己喜欢的方法解决这个问题。

    三、延伸、应用

  1.鸡兔同笼问题在我国1500年前就出现在《孙子算经》中了,现在我们也可以顺利地解决出这样的传统名题了,这个问题传到日本时就变成了“龟鹤问题”,你认为“龟鹤问题”与“鸡兔同笼”有什么相似之处?课件出示(龟相当于兔,鹤相当于鸡)展示学生作业,并抽生说说思路。

  2.看来这类问题我们不只局限在鸡兔问题上,我们学习数学不光会做一些数学题,还应该帮我们解决生活中遇到的一些问题。那请同学们用“鸡兔同笼”的解题方法来解决生活中遇到的问题吧。

  3、猜硬币游戏。

  每个小组桌上信封里都有2角和5角的硬币共7个,共有的钱数写在信封上。请大家猜一猜,有几个2角的,有几个5角的。

  3、课件出示“做一做”第二题。问这道题与“鸡兔同笼”问题有相似的地方吗?有哪些地方相似?(大船相当于“兔”,小船相当于“鸡”)那请同学说说鸡兔共多少只?共有多少只脚?鸡有几只脚?兔有几只脚?

  反思:《鸡兔同笼》是人教版六年级上册第七单元“数学广角”中的内容。教材在这一单元安排“鸡兔同笼”问题,主要让学生了解“鸡兔同笼”问题,让学生尝试用不同的方法解决“鸡兔同笼”问题,这样一方面可以培养学生的逻辑推理能力,另一方面使学生体会代数方法的一般性,以此来让学生感受古代数学问题的趣味性,受到祖国优秀数学文化的熏陶和感染。

  这节课在设计时主要想体现以下特色:

    一、注重解题策略的多样

  这节课的教学目标就是要突出解决问题策略的多样化。教学中,我注意引导学生从多角度思考问题,运用了猜测、列表、假设、代数等多种方法分析解题。这样,通过多种解题方法的探索和对比,使学生充分体会到解题策略的多样性,让学生积累了解决问题的经验,掌握了解决问题的不同方法,同时也促进学生数学思维能力的发展。

    二、注重数学思想的渗透

  “数学广角”人教版教材新增设的一个内容,主要是介绍和渗透一些数学思想方法,其目的是把一些重要的数学思想方法通过学生日常生活中最简单的事例呈现出来,在教学过程中,我在运用多种方法解决问题所采用的策略中,有意识的渗透了数学思想。如:把《孙子算经》中的原题数据改小,变为例1的过程中渗透化繁为简的思想;“列表”的策略中便渗透了变化和函数思想,“算术法”的策略中渗透了假设思想,“方程”的策略中渗透了代数思想等等。这些无疑给我们今后在数学课上灵活渗透数学思想是一个启迪。

    三、注重学生思维的培养

  对于鸡兔问题,在数据不大的情况下,都能用猜测、画图或列表解决,但对于六年级的学生来说,当数据较大时,猜测、画图和列表就有它们各自的局限性,所以真正能够适应于此类问题的具有普遍意义的一般方法还是假设法和代数法。在教学中,我注重了这些方法之间的联系和层次,有意识的对学生进行了思维培养。如:课始让学生经历无序猜想——有序尝试的思维历练过程。学生一开始接触到这个问题肯定是摸不到头绪,首先是猜想到底是几只鸡,几只兔?接着尝试列表解决,从8只鸡、0只兔开始于是就觉得依次尝试能得到答案有些麻烦,有没有更好的方法呢?这样就让学生自然而然的结合表格进入到假设法的深层次思维与探究之中。学生的学习过程步步深入,思维也层层拔高,这样学生不仅掌握了知识,更为重要的是学到了一种探索、学习的普遍思维方式和方法。

    四、注重数学文化的培养

  鸡兔同笼问题是《孙子算经》中一个较为出名的问题。教学中,我把《孙子算经》的原题和特殊解法搬到课堂中来,这都是一种数学文化在现代课堂当中的一种深刻地体现!无论是课的导入到数学模型的建立到后期的练习,都注重了这种数学文化的渗透和对数学文化的一种关注。

  在今天的实际操作中,一节课下来,感觉容量偏大,学生学得很累,而且可能还有一部份学生掌握得并不好,虽然数学广角重点在渗透思想方法,但如果做不起题,那算不算方法渗透好呢?对于把曾经的少数尖子生学习的奥赛内容,拿来面对全体学生,如何教?如何掌握度?这些都是我下来之后还要思考的问题,也请各位同行们多指教!

    热门推荐

    猜您感兴趣

    相关文章

    上一篇:播音主持自我介绍,主持人自我介绍
    下一篇:我们爱科学征文,我们爱科学
    

    Copyright © 2022-2024 www.juzici.com

    All right reserved. 猫宁早安 版权所有

    鲁ICP备15008254号

    返回顶部重选