范文大全
初中数学教案设计:一元二次方程的应用最新,一元二次方程教案
初中数学教案设计篇1
一元二次方程的应用(一)
一、素质教育目标
(-)知识教学点:使学生会用列一元二次方程的方法解有关数与数字之间关系的应用题。
(二)能力训练点:通过列方程解应用问题,进一步提高分析问题、解决问题的能力。
二、教学重点、难点
1.教学重点:会用列一元二次方程的方法解有关数与数字之间的关系的应用题。
2.教学难点 :根据数与数字关系找等量关系。
三、教学步骤
(一)明确目标
(二)整体感知:
(三)重点、难点的学习和目标完成过程
1.复习提问
(1)列方程解应用问题的步骤?
①审题,②设未知数,③列方程,④解方程,⑤答。
(2)两个连续奇数的表示方法是,2n+1,2n-1;2n-1,2n-3;……(n表示整数)。
2.例1 两个连续奇数的积是323,求这两个数。
分析:(1)两个连续奇数中较大的奇数与较小奇数之差为2,(2)设元(几种设法) 。设较小的奇数为x,则另一奇数为x+2, 设较小的奇数为x-1,则另一奇数为x+1; 设较小的奇数为2x-1,则另一个奇数2x+1.
以上分析是在教师的引导下,学生回答,有三种设法,就有三种列法,找三位学生使用三种方法,然后进行比较、鉴别,选出最简单解法。
解法(一)
设较小奇数为x,另一个为x+2,
据题意,得x(x+2)=323.
整理后,得x2+2x-323=0.
解这个方程,得x1=17,x2=-19.
由x=17得x+2=19,由x=-19得x+2=-17,
答:这两个奇数是17,19或者-19,-17.
解法(二)
设较小的奇数为x-1,则较大的奇数为x+1.
据题意,得(x-1)(x+1)=323.
整理后,得x2=324.
解这个方程,得x1=18,x2=-18.
当x=18时,18-1=17,18+1=19.
当x=-18时,-18-1=-19,-18+1=-17.
答:两个奇数分别为17,19;或者-19,-17.
解法(三)
设较小的奇数为2x-1,则另一个奇数为2x+1.
据题意,得(2x-1)(2x+1)=323.
整理后,得4x2=324.
解得,2x=18,或2x=-18.
当2x=18时,2x-1=18-1=17;2x+1=18+1=19.
当2x=-18时,2x-1=-18-1=-19;2x+1=-18+1=-17
答:两个奇数分别为17,19;-19,-17.
引导学生观察、比较、分析解决下面三个问题:
1.三种不同的设元,列出三种不同的方程,得出不同的x值,影响最后的结果吗?
2.解题中的x出现了负值,为什么不舍去?
答:奇数、偶数是在整数范围内讨论,而整数包括正整数、零、负整数。3.选出三种方法中最简单的一种。
练习
1.两个连续整数的积是210,求这两个数。
2.三个连续奇数的和是321,求这三个数。
3.已知两个数的和是12,积为23,求这两个数。
学生板书,练习,回答,评价,深刻体会方程的思想方法。例2 有一个两位数等于其数字之积的3倍,其十位数字比个位数字小2,求这两位数。
分析:数与数字的关系是:
两位数=十位数字×10+个位数字。
三位数=百位数字×100+十位数字×10+个位数字。
解:设个位数字为x,则十位数字为x-2,这个两位数是10(x-2)+x。
据题意,得10(x-2)+x=3x(x-2),
整理,得3x2-17x+20=0,
当x=4时,x-2=2,10(x-2)+x=24.
答:这个两位数是24.
练习1 有一个两位数,它们的十位数字与个位数字之和为8,如果把十位数字与个位数字调换后,所得的两位数乘以原来的两位数就得1855,求原来的两位数。(35,53)
2.一个两位数,其两位数字的差为5,把个位数字与十位数字调换后所得的数与原数之积为976,求这个两位数。
教师引导,启发,学生笔答,板书,评价,体会。
(四)总结,扩展
1奇数的表示方法为 2n+1,2n-1,……(n为整数)偶数的表示方法是2n(n是整数),连续奇数(偶数)中,较大的与较小的差为2,偶数、奇数可以是正数,也可以是负数。
数与数字的关系
两位数=(十位数字×10)+个位数字。
三位数=(百位数字×100)+(十位数字×10)+个位数字。
……
2.通过本节课内容的比较、鉴别、分析、综合,进一步提高分析问题、解决问题的能力,深刻体会方程的思想方法在解应用问题中的用途。
四、布置作业
教材P。42中A1、2、
初中数学教案设计篇2
22.1 一元二次方程
第一课时
教学内容
一元二次方程概念及一元二次方程一般式及有关概念。
教学目标
了解一元二次方程的概念;一般式ax2+bx+c=0(a≠0)及其派生的概念;应用一元二次方程概念解决一些简单题目。
1.通过设置问题,建立数学模型,模仿一元一次方程概念给一元二次方程下定义。
2.一元二次方程的一般形式及其有关概念。
3.解决一些概念性的题目。
4.态度、情感、价值观
4.通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情。
重难点关键
1.重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题。
2.难点关键:通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念。
教学过程
一、复习引入
学生活动:列方程。
问题(1)《九章算术》“勾股”章有一题:“今有户高多于广六尺八寸,两隅相去适一丈,问户高、广各几何?”
大意是说:已知长方形门的高比宽多6尺8寸,门的对角线长1丈,那么门的高和宽各是多少?
如果假设门的高为x尺,那么,这个门的宽为_______尺,根据题意,得________。
整理、化简,得:__________。
问题(2)如图,如果 ,那么点c叫做线段ab的黄金分割点。
如果假设ab=1,ac=x,那么bc=________,根据题意,得:________。
整理得:_________。
问题(3)有一面积为54m2的长方形,将它的一边剪短5m,另一边剪短2m,恰好变成一个正方形,那么这个正方形的边长是多少?
如果假设剪后的正方形边长为x,那么原来长方形长是________,宽是_____,根据题意,得:_______。
整理,得:________。
老师点评并分析如何建立一元二次方程的数学模型,并整理。
二、探索新知
学生活动:请口答下面问题。
(1)上面三个方程整理后含有几个未知数?
(2)按照整式中的多项式的规定,它们最高次数是几次?
(3)有等号吗?或与以前多项式一样只有式子?
老师点评:(1)都只含一个未知数x;(2)它们的最高次数都是2次的;(3)都有等号,是方程。
因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。
一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a≠0)。这种形式叫做一元二次方程的一般形式。
一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。
例1.将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项。
分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0)。因此,方程(8-2x)(5-2x)=18必须运用整式运算进行整理,包括去括号、移项等。
解:去括号,得:
40-16x-10x+4x2=18
移项,得:4x2-26x+22=0
其中二次项系数为4,一次项系数为-26,常数项为22.
例2.(学生活动:请二至三位同学上台演练) 将方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项。
分析:通过完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a≠0)的形式。
x2+2x+1+x2-4=1
移项,合并得:2x2+2x-4=0
其中:二次项2x2,二次项系数2;一次项2x,一次项系数2;常数项-4.
三、巩固练习
教材p32 练习1、2
四、应用拓展
例3.求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程。
分析:要证明不论m取何值,该方程都是一元二次方程,只要证明m2-8m+17≠0即可。
证明:m2-8m+17=(m-4)2+1
∵(m-4)2≥0
∴(m-4)2+1>0,即(m-4)2+1≠0
∴不论m取何值,该方程都是一元二次方程。
五、归纳小结(学生总结,老师点评)
本节课要掌握:
(1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a≠0)和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用。
六、布置作业
1.教材p34 习题22.1 1、2.
2.选用作业设计。
初中数学教案设计篇3
教学目标
1. 了解整式方程和的概念;
2. 知道的一般形式,会把化成一般形式。
3. 通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。
教学重点和难点:
重点:的概念和它的一般形式。
难点:对的一般形式的正确理解及其各项系数的确定。
教学建议:
1. 教材分析:
1)知识结构:本小节首先通过实例引出的概念,介绍了的一般形式以及中各项的名称。
2)重点、难点分析
理解的定义:
是 的重要组成部分。方程 ,只有当 时,才叫做。如果 且 ,它就是了。解题时遇到字母系数的方程可能出现以下情况:
(1)的条件是确定的,如方程 ( ),把它化成一般形式为 ,由于 ,所以 ,符合的定义。
(2)条件是用“关于 的”这样的语句表述的,那么它就隐含了二次项系数不为零的条件。如“关于 的 ”,这时题中隐含了 的条件,这在解题中是不能忽略的。
(3)方程中含有字母系数的 项,且出现“关于 的方程”这样的语句,就要对方程中的字母系数进行讨论。如:“关于 的方程 ”,这就有两种可能,当 时,它是一元一次方程 ;当 时,它是,解题时就会有不同的结果。
教学目的
1.了解整式方程和的概念;
2.知道的一般形式,会把化成一般形式。
3.通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。
教学难点和难点:
重点:
1.的有关概念
2.会把化成一般形式
难点: 的含义。
第 1 2 页
初中数学教案设计篇4
【教学目标】
知识与技能:探索一元二次方程及其相关概念,能够辨别各项系数;能够从实际问题中抽象出方程知识。
过程与方法:在探索问题的过程中使学生感受方程是刻画现实世界的一个模型,体会方程与实际生活的联系。
情感态度:通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用。
【教学重点】
一元二次方程的概念。
【教学难点】
如何把实际问题转化为数学方程。
【教学过程】
一、情景导入,初步认知
问题1:已知一矩形的长为200c,宽150c。在它的中间挖一个圆,使剩余部分的面积为原矩形面积的34,求挖去的圆的半径xc应满足的`方程。(π取3)问题2:据某市交通部门统计,前年该市汽车拥有量为75万辆,两年后增加到108万辆,求该市两年来汽车拥有量的年平均增长率x应满足的方程。你能列出相应的方程吗?
【教学说明】为学生创设了一个回忆、思考的情境,又是本课一种很自然的引入,为本课的探究活动做好铺垫。
二、思考探究,获取新知
1.对于问题1:找等量关系:矩形的面积—圆的面积=矩形的面积×3/4
列出方程:200×150-3x2=200×150×3/4 ①
对于问题2:
等量关系:两年后的汽车拥有量=前年的汽车拥有量×(1+年平均增长率)2
列出方程:75(1+x)2=1082 ②
2.能把①,②化成右边为0,而左边是只含有一个未知数的二次多项式的形式吗?让学生展开讨论,并引导学生把①,②化成下列形式:
①化简,整理得x2-2500=0 ③
②化简,整理得25x2+50x-11=0 ④
3.讨论:方程③、④中的未知数的个数和次数各是多少?
【教学说明】分组合作、小组讨论,经过讨论后交流小组的结论,可以发现上述方程都不是所学过的方程,特点是两边都是整式,且整式的最高次数是2次。
【归纳结论】如果一个方程通过移项可以使右边为0,而左边是只含有一个未知数的二次多项式,那么这样的方程叫作一元二次方程,它的一般形式是:ax2+bx+c=0,(a,b,c是常数且a≠0),其中a,b,c分别叫作二次项系数、一次项系数、常数项。
4.让学生指出方程③,④中的二次项系数、一次项系数和常数项。
【教学说明】让学生充分感受所列方程的特点,再通过类比的方法得到定义,从而达到真正理解定义的目的。
三、运用新知,深化理解
1.见教材P27例题。
2.下列方程是一元二次方程的有。
【答案】 (5)
3.已知(+3)x2-3x-1=0是一元二方程,则的取值范围是_____。
分析 :一元二次方程二次项的系数不等于零。故≠-3.
【答案】 ≠-3
4.把方程(1-3x)(x+3)=2x2+1化为一元二次方程的一般形式,并写出二次项,二次项系数,一次项,一次项系数及常数项。
解 :原方程化为一般形式是:5x2+8x-2=0(若写成-5x2-8x+2=0,则不符合人们的习惯),其中二次项是5x2,二次项系数是5,一次项是8x,一次项系数是8,常数项是-2(因为一元二次方程的一般形式是三个单项式的和,所以不能漏写单项式系数的负号)。
5.关于x方程x2-3x=x2-x+2是一元二次方程,应满足什么条件?
分析 :先把这个方程变为一般形式,只要二次项的系数不为0即可。
解 :由x2-3x=x2-x+2得到(-1)x2+(-3)x-2=0,所以-1≠0,
即≠1.所以关于x的方程x2-3x=x2-x+2是一元二次方程,应满足≠1.
6.一元二次方程(x+1)2-x=3(x2-2)化成一般形式是。
分析: 一元二次方程一般形式是ax2+bx+c=0(a≠0),对照一般形式可先去括号,再移项,合并同类项,得2x2-x-7=0.
【答案】 2x2-x-7=0
7.把方程-5x2+6x+3=0的二次项系数化为1,方程可变为( )
A。x2+6/5x+3/5=0 B。x2-6x-3=0
C。x2-6/5x-3/5=0 D。x2-6/5x+3/5=0
【答案】 C
注意方程两边除以-5,另两项的符号同时发生变化。
8.已知方程(+2)x2+(+1)x-=0,当满足______时,它是一元一次方程;当满足______时,它是二元一次方程。
分析: 当+2=0,=-2时,方程是一元一次方程;当+2≠0,≠-2时,方程是二元一次方程。
【答案】 =-2≠-2
9.某型号的手机连续两次降价,每个售价由原来的1185元降到了580元,设平均每次降价的百分率为x,则列出方程为____________
【答案】 1185(1-x)2=580
10.当常数a,b,c满足什么条件时,方程(a-1)x2-bx+c=0是一元二次方程?这时方程的二次项系数、一次项系数分别是什么?当常数a,b,c满足什么条件时,方程(a-1)x2-bx+c=0是一元一次方程?
解:当a≠1时是一元二次方程,这时方程的二次项系数是a-1,一次项系数是-b;当a=1,b≠0时是一元一次方程。
【教学说明】这组练习目的在于巩固学生对一元二次方程定义中几个特征的理解。进一步巩固学生对一元二次方程的基本概念。
四、师生互动、课堂小结
先小组内交流收获和感想,而后以小组为单位派代表进行总结。教师作以补充。
【课后作业】布置作业:教材“习题2.1”中第1、2、6题。
【学反思】
本节课是一元二次方程的第一课时,通过对本节课的学习,学生将掌握一元二次方程的定义、一般形式、及有关概念,并学会利用方程解决实际问题。在教学过程中,注重重难点的体现。本节课内容对于学生整个中学阶段的数学学习有着重大的意义,能否学好关系到日后学习的成败,因此必须要让学生吃透内容并且要真正能消化。
初中数学教案设计篇5
[课 题] §12.1 一元二次方程[教学目的] 使学生了解整式方程、一元二次方程的意义;使学生知道并能认识一元二次方程的一般形式,会把一元二次方程化成一般形式。[教学重点] 使学生知道并能认识一元二次方程的一般形式,会把一元二次方程化成一般形式。[教学难点 ] 使学生掌握什么是一元二次方程的二次项和系数、一次项和系数以及常数项,[教学关键] 使学生掌握在指出一元二次方程的二次项系数、一次项系数和常数项时,一定要包括它们的符号。[教学用具] [教学形式] 讲练结合法。[教学用时] 45′×1 [教学过程 ][复习提问] 例方程解应用题的一般步骤是什么?[讲解新课]引例可由教师提出并分析其中的数量关系,设出未知数,列出代数式,并根据等量关系列出方程:(80-2x)(60-2x)=1500.(这其中应重点复习列方程解应用题的方法、步骤,或讲解或提问应视具体情况而定)。提问:如何将上述方程整理?整理后,得:x2-70x+825=0.这里不必多讲,只指出:这个方程(什么方程?这里不谈)与我们已经学过的一元一次方程不同,我们学了这一章,就可以解这个方程,从而解决上述问题。接着书写教科书第4页的问题:剪一块面积是150cm2的长方形铁片,使它的长比宽多5cm,这块铁片应该怎样剪?引导学生分析题意,设未知数,列出代数式,找出相等关系,列出方程:x(x+5)=150.去括号,得: x2+5 x=150.现在来观察这个方程:它的两边都是关于未知数的整式,指出“这样的方程叫做整式方程。”就这一点来说它与一元一次方程没有什么区别,因而,一元一次方程也是整式方程,但一元一次方程未知数的次数是1,而上列方程未知数的最高次数是2,所以,只含有一个未知数,并且未知数的最高次数是2,这样的整式方程叫做一元二次方程。(这样与一元一次方程对比着讲,既使整式方程的内含扩大,以加深学生的印象,也可使学生深刻了解一元二次方程的意义。)下列方程都是整式方程吗?其中哪些是一元一次方程?哪些是一元二次方程?1、3x+2=5x-3;(2x=5)2、x2=4;3、(x-1)(x-2)=x2+8;(3x=-6)4、(x+3)(3x-4)=(x+2)2;(2x2+x-16=0)(上述方程都是整式方程。其中1、3是一元一次方程,2、4是一元二次方程。)上列方程中的4,两边展开,得3x2+5x-12=x2+4x+4移项,得 2x2+x-16=0事实上,方程x2+5 x=150移项,得 x2+5 x-150=0这就是说,任何一个关于x的一元二次方程,经过整理,都可以化成下面的形式: ax2+bx+c=0(a≠0)。这种形式叫做一元二次方程的一般形式。这里应强调指出,方程 ax2+bx+c=0只有当a≠0时,才叫一元二次方程。如果a=0,b≠0,就是一元一次方程了。所以在一般形式中,必须包含a≠0这个条件。随后指出,在方程中,ax2,bx,c各项的名称,并举例说明。(ax2叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项。)例1 把方程3x(x-1)=2(x+2)+8化成一般形式,并写出它的二次项系数、一次项系数及常数项。解:去括号,得 3x2-3 x=2x+4+8移项,合并同类项,得 x2-5 x-12=0二次项系数是3;一次项系数是-5;常数项是-12.[课堂练习]教科书第5页练习第1,2题。[课堂小结]通过本节课的学习,我们知道了什么是整式方程,什么叫做一元二次方程和一元二次方程的一般形式:ax2+bx+c=0(a≠0)。在这里我们要特别注意a≠0这个条件。同时我们还学习了一元二次方程化成一般形式后,什么是二次项系数,什么是一次项系数,什么是常数项,在指出这三项内容时,要特别注意它们的符号。[课外作业 ]复习教科书第4,5页的内容,预习教科第6页上的内容。 [板书设计 ]课题: 例题:辅助板书: [课后记]
通过本节课的学习,大部分学生已掌握了什么是整式方程,什么是一元二次方程的概念,对今后学习一元二次方程的解法打下了良好的基础。
热门推荐
猜您感兴趣
相关文章
管理沟通心得,管理沟通
本文目录一览: ★、 管理沟通心得篇1 ★、 管理沟通心...组织生活会会议记录,组织生活会
本文目录一览: ★、 组织生活会会议记录篇1 ★、 组织...学生工作学期工作总结,学期工作总结
本文目录一览: ★、 学生工作学期工作总结篇1 ★、 学...社会调查报告怎么写,社会调查报告怎么写
本文目录一览: ★、 社会调查报告怎么写十篇篇1 ★、...创新人才培养,创新人才培养
本文目录一览: ★、 创新人才培养篇1 ★、 创新人才培...项目建议书,项目建议书
本文目录一览: ★、 项目建议书篇1 ★、 项目建议书篇...大学生毕业论文,毕业论文
本文目录一览: ★、 大学生毕业论文篇1 ★、 大学生毕...餐饮具用具消毒制度,餐具消毒
本文目录一览: ★、 餐饮具用具消毒制度篇1 ★、 餐饮...季度工作总结,季度工作总结
本文目录一览: ★、 季度工作总结篇1 ★、 季度工作总...新员工培训心得体会总结,新员工培训心得
本文目录一览: ★、 新员工培训心得体会总结篇1 ★、...同学聚会活动方案,聚会活动
本文目录一览: ★、 同学聚会活动方案篇1 ★、 同学聚...幼儿园大班教案《蝌蚪》,蝌蚪
本文目录一览: ★、 幼儿园大班教案《蝌蚪》篇1 ★、...单位推荐意见优秀,单位推荐意见
本文目录一览: ★、 单位推荐意见优秀篇1 ★、 单位推...教研工作总结,教研组工作总结
本文目录一览: ★、 教研工作总结篇1 ★、 教研工作总...一对一谈心谈话记录范文十,一对一谈心谈话记录
本文目录一览: ★、 一对一谈心谈话记录范文十篇1 ★...创建全国文明城市工作方案,文明城市创建
本文目录一览: ★、 创建全国文明城市工作方案篇1 ★...工作月份总结报告范文,月总结报告
本文目录一览: ★、 工作月份总结报告范文篇1 ★、 工...个人职业规划,个人职业规划
本文目录一览: ★、 个人职业规划篇1 ★、 个人职业规...试用期工作自我评价50字,试用期自我评价
本文目录一览: ★、 试用期工作自我评价50字篇1 ★、...给女儿的一封信,写给女儿的一封信
本文目录一览: ★、 给女儿的一封信篇1 ★、 给女儿的...优秀党员表态发言稿,党员发言
本文目录一览: ★、 优秀党员表态发言稿篇1 ★、 优秀...自我鉴定怎么写800范文字2024,自我鉴定怎么写
本文目录一览: ★、 自我鉴定怎么写800范文字2024篇1 ★...五行相生相克对照表,五行相克
本文目录一览: ★、 五行相生相克对照表篇1 ★、 五行...万能个人年终工作总结优秀,个人年终总结
本文目录一览: ★、 万能个人年终工作总结优秀篇1 ★...学习法律的心得体会,学法
本文目录一览: ★、 学习法律的心得体会篇1 ★、 学习...中班《小动物怎样过冬》教案,小动物过冬
本文目录一览: ★、 中班《小动物怎样过冬》教案篇...发展研究报告,发展研究报告
本文目录一览: ★、 发展研究报告篇1 ★、 发展研究报...对党支部的意见和建议精选,党支部
本文目录一览: ★、 对党支部的意见和建议篇1 ★、 对...领导致辞范例,领导致辞
本文目录一览: ★、 领导致辞范例篇1 ★、 领导致辞范...销售管理制度,销售管理
本文目录一览: ★、 销售管理制度篇1 ★、 销售管理制...