范文大全

电力电子技术论文范例,电力电子技术

作者: 猫宁 发布日期:2024年03月17日

电力电子技术论文范例篇1

  关键词:发展趋势技术创新器件开发应用推广

  1概述

  自本世纪五十年代未第一只晶闸管问世以来,电力电子技术开始登上现代电气传动技术舞台,以此为基础开发的可控硅整流装置,是电气传动领域的一次革命,使电能的变换和控制从旋转变流机组和静止离子变流器进入由电力电子器件构成的变流器时代,这标志着电力电子的诞生。进入70年代晶闸管开始形成由低电压小电流到高电压大电流的系列产品,普通晶闸管不能自关断的半控型器件,被称为第一代电力电子器件。随着电力电子技术理论研究和制造工艺水平的不断提高,电力电子器件在容易和类型等方面得到了很大发展,是电力电子技术的又一次飞跃,先后研制出GTR。GTO,功率MOSFET等自关断全控型第二代电力电子器件。而以绝缘栅双极晶体管(IGBT)为代表的第三代电力电子器件,开始向大容易高频率、响应快、低损耗方向发展。而进入90年代电力电子器件正朝着复台化、标准模块化、智能化、功率集成的方向发展,以此为基础形成一条以电力电子技术理论研究,器件开发研制,应用渗透性,在国际上电力电子技术是竞争最激烈的高新技术领域。

  2电力电子器发展回顾

  整流管是电力电子器件中结构最简单,应用最广泛的一种器件。目前已形成普通型,快恢复型和肖特基型三大系列产品,电力整流管对改善各种电力电子电路的性能,降低电路损耗和提高电流使用效率等方面都具有非常重要的作用。自1958年美国通用电气GE公司研制出第一个工业用普通晶闸管开始,其结构的改进和工艺的改革为新器件开发研制奠定了基础,在以后的十年间开发研制出双向,逆变、逆导、非对称晶闸管,至今晶闸管系列产品仍有较为广泛的市场。

  1964年在美国第一次试制成功了0.5kV/0.01kA的可关断的GTO至今,目前以达到9kV/0.25kA/0.8kHz的可关断的GTO至今,目前以达到9kV/2.5kA/0.8kHZ及6kV/6kA/1kHZ的水平,在当前各种自关断器件中GTO容量量最大,但其工作频率最低,但其在大功率电力牵引驱动中有明显的优势,因此它在中压、大客量领域中占有一席之地。70年代研制出GTR系列产品,其额定值已达1.8kV/0.8kA/2kHZ,0.6kV/0.003kA/100kHZ,它具有组成的电路灵活成熟,开关损耗小、开关时间短等特点,在中等容量、中等频率的电路中应用广泛,而作为高性能,大容量的第三代绝缘栅型双极性晶体管IGBT,因其具有电压型控制,输入阻抗大、驱动功率小,开关损耗低及工作频率高等特点,其有着广阔的发展前景。而IGCT是最近发展起来的新型器件,它是在GTO基础上发展起来的器件,称为集成门极换流晶闸管,也有人称之为发射极关断晶闸管,它的瞬时开关频率可达20kHZ,关断时间为1μs,dildt4kA/ms,du/dt10-20kV/ms,交流阻断电压6kV,直流阻断电压3.9kV,开关时间<2ks,导通压降3600A时,2.8V,开关频率>1000Hz。

  3电力电子器件发展趋势

  进入90年代电力电子器件的研究和开发,已进入高频化,标准模块化,集成化和智能时代。从理论分析和实验证明电气产品的体积与重量的缩小与供电频率的平方根成反比,也就说,当我们将50Hz的标准二频大幅的提高之后,使用这样工频的电气设备的体积与重量就能大大缩小,使电气设备制造节约材料,运行时节电就更加明显,设备的系统性能亦大为改善,尤其是对航天工业其意义十分深远的。故电力电子器件的高频化是今后电力电子技术创新的主导方向,而硬件结构的标准模块是器件发展的必然趋势,目前先进的模块,已经包括开关元件和与其反向并联的续流二极管在内及驱动保护电路多个单元,并都以标准化和生产出系列产品,并且可以在一致性与可靠性上达到极高的水平。目前世界上许多大公司已开发出IPM智能化功率模块,如日本三菱、东芝及美国的国际整流器公司已有成熟的产品推出。日本新电元公司的IPM智能化功率模块的主要特点是:

  3.1它内部集成了功率芯片,检测电路及驱动电路,使主电路的结构为最简。

  3.2其功率芯片采用的是开关速度高,驱动电流小的IGBT,且自带电流传感器,可以高效地检测出过电流和短路电流,给功率芯片以安全的保护。

  3.3在内部配线上将电源电路和驱动电路的配线长度控制到最短,从而很好地解决了浪涌电压及噪声影响误动作等问题。

  3.4自带可靠的安全保护措施,当故障发生时能及时关断功率器件并发出故障信号,对芯片实施双重保护,以保证其运行的可靠性。

  4电力电子技术创新

电力电子技术论文范例篇2

  关键词:电力电子技术;发展趋势;应用

  0 前言

  现代电力电子技术的发展经历了几个不同的阶段,整流器时代、逆变器时代和变频器时代,现代电力电子技术属于变频器时代,同时又与微电子技术有效地进行了结合,这不仅使其应用范围十分广泛,而且在国民经济中的地位也变得越来越重要。

  1 现代电力电子技术的发展趋势

  在当前科学技术快速发展的新形势下,随着电力电子技术的不断革新,其发展达到了一个较高的水平。现代电力电子技术主要是对电源技术进行开发和应用,可以说电源技术的发展是当前电力电子技术发展的主要方向。

  1.1 现代电力电子技术向模块化和集成化转变

  电源单元和功率器件作为现代电力电子技术的重要组成部分,是电子器件智能化的核心所在,其组成器件具有微小性,因此电力电子器件结构也更为紧凑,体积较小,但其能够与其他不同器件的优点进行有效综合,所以其具有显著的优势。也加快了现代电力电子技术向模块化和集成化转变的进程,为电力系统使用性能的提升奠定了良好的基础。

  1.2 现代电力电子技术从低频向高频化转变

  变压器供电频率与变压器的电容体积、电感呈现反比的关系,在电力电子器件体积不断缩小的情况下,现代电力电子技术必然会加快向高频化方向转化。可控制关断型电力电子器件的出现即是现代电力电子技术向高频转化的重要标志。而且随着科学技术发展速度的加快,电力电子技术也必然会向着更高频的方向发展。

  1.3 现代电力电子技术向全控化和数字化转变

  传统的电力电子器件在使用过程中存在着一些限制,而且关断电器时还会产生一些危险,自关断的全控型器件在市场上出现后,有效地弥补了这些限制和避免了危险的发生,这也是现代电力电子技术变革的重要体现,表明现代电力电子技术加快了数字化发展的进程。

  1.4 现代电力电子技术向绿色化转变

  现代电力电子技术向绿色化转变主要表现在节能和电子产品两个方面。相比于传统的电力电子技术来讲,现代电力电子技术的节能性更好,这也实现了发电容量的有效节约,对环境保护带来了较好的效果。一直以来一些电子设备会将严重的高次谐波电流入到电网中,给电网带来较大的污染,导致电网总功率质量下降,电网电压出现不同程序的畸变。到了上世纪末期,各种有源滤波器和补偿器的面世,实现了对功率参数的修正,从而为现代电力电子技术的绿色化发展奠定了良好的基础。

  2 现代电力电子技术的应用

  现代电力电子技术的功能具有多样性的特点,其在多个领域都有着广泛的应用,这也决定了现代电力电子技术在国民经济发展中占据非常重要的地位,有着不可替代的作用。

  2.1 电源方面

  (1)一般电源。现代电力电子技术在开关电源和供电电源方面都取得了较大的进展,交流电直接由整流器转变为直流电,这部分直流电一部分由逆变器转换为交流,然后经由转换开关到达负载,而另一部分则直接对蓄电池组进行充电。一旦逆变器发生故障,蓄电池组则作为备用电源开始直接向负载提供能量。在现在的电力电子器件中普遍采用MOSFET和IGBT作为电源,不仅具有较好的降噪性,而且电源的效率和可靠性也能够得到有效的保障。

  (2)专用电源。高频逆变式焊机电源和大功率开关型高压直流电源是比较典型的两种应用现代电力电子技术的专用电源。高频逆变式焊机电源是一种高性能的电源,由于大容量模块IGBT的普遍使用,使得这种电源有着更加广阔的应用前景,逆变式焊机电源基本采用的都是交流-直流-交流-直流的转换方法,由于焊机工作的环境条件恶劣,所以燃弧、短路等就成为了司空见惯的问题,而采用IGBT组成的PWM相关控制器,能够提取和分析参数和信息,进而预先对系统做出处理和调整。大功率开关型高压直流电源主要应用CT机、静电除尘等比较大型的设备上,因为这类设备电压比较高,甚至达到了50 ~ 159kV,将市电经过整流器整流变为直流,然后与谐振逆变电路串联,逆变为高频电压,再升压,最后整流成为直流高压。

  2.2 传动控制及牵引

  这主要应用在无轨电车、地铁列车、电动车的无级变速和控制等等方面,通过将一个固定的直流电压转换为一个可以变化的直流电压,这样就能够使控制更加的平稳和快速,而且还可以节能。

  2.3 在电力系统中的应用

  在发电系统中现代电力电子技术的应用更是广泛,比如说水力风力发电、用电系统、配电、输电等等都和现代电力电子技术有着密切的联系。目前的风力电力机组已经结合了机械制造、空气动力学、计算机控制技术、电力电子技术等等,而现代电力电子技术就是发电系统中不可或缺的重要技术,它对于电能的转换、机组的控制和改善电能质量等都很重要。

  2.4 在节能和改造传统行业中的应用

  现代工作的开展离不开电能的支持,电能是现代工业的重要动力和能量源头。随着我国工业用电量不断增加,用电的不合理及浪费现象也日益显现出来。这就需要有效地降低能源的消耗,提高电能的利用效率,以便于能够对当前能源紧缺的局面起到一定的缓解作用。因此需要充分的发挥现代电力电子技术的性能优势,有效地提高现代电力电子技术的效率,应用现代电力电子技术,通过工业控制有效地将电能转换为劳动力,建成现代化的智能车库,从而降低工人的劳动强度,实现人力资源的节约,确保劳动生产力的提高,以便于推动传统行业的改造进程。

  2.5 在家用电器方面的应用

  现代电力电子技术在我们日常生活中应用也较为广泛,当前家用电器普遍应用现代电力电子技术,给我们的日常生活带来了较大的便利。许多电器都只需要按下按钮就能进行工作,而不需要人们亲自动手。

  3 应用展望

  在今后现代电力电子技术应用过程中,需要重视以下几个方面的问题:首先,需要对节能和环保给予充分的重视,通过完善控制设备和设计专用的电机来有效地提高电机系统的使用性能和效率;其次,为了实现节能和环保,则需要使用中高压直流转电系统,使其实现低能耗及低污染;最后,需要加快解决电力系统中储电装置的设置问题,需要电力系统设计者从控制技术等方面来制定切实可行的解决方案,从而对电能储备中存在问题进行有效解决,更好地推动电力系统的持续、稳定发展。

  4 结语

  现代电力电子技术在多个领域都得到了广泛的应用,特别是对电网的控制和转换上发挥着非常重要的作用。通过现代电力电子技术的应用,使大功率电能成为其他高新技术的重要基础,这也决定了现代电力电子技术在国民经济发展中的重要地位具有不可替代性,对推动经济和社会的发展发挥着非常重要的作用。

  参考文献:

  [1] 刘增金。电力电子技术的发展及应用探究[J]。电子世界,2011(9):19+25.

  [2] 冷海滨。现代电力电子技术的发展趋势探析[J]。电子技术与软件工程,2014(1):156-157.

  [3] 韦和平。现代电力电子及电源技术的发展[J]。现代电子技术,2005(18):102-105.

  作者简介:益聪(1994―),男,陕西西安人,沈阳理工大学学生。

电力电子技术论文范例篇3

  1.1对表计的使用存在误差

  (1)在电力计量中,有功电能的计量出现误差。电力计量中的有功电能是三相四线系统,由三相三线二元件电度表来对电力进行计量。三相中的每一相都能够与零线相连,成为一个单相回路。如果负荷不平衡而导致了零序电压的产生,零序电流流过零线,三相电流之和出现异常。而三相三线二元件电度表没有对被零序电流消耗的功率进行计算,在电力计量时就会少计电量。

  (2)电阻过大造成计量误差。在三相四线三元件电度表中,存在较大的中性线电阻,这就会造成电力计量的误差。有些计量点虽然已经开始使用三相四线三元件电度表,但电阻过大的情况依然会出现。这主要是由于施工失误或者其他原因,中性线被断开。这就造成接触电阻和中性线电阻都过大,严重影响了电力计量的准确性。

  1.2没有齐全的电力计量装置配备

  (1)一表乘三的计量方式。很多三相不平衡的地区却使用一表乘三的方式来对电力进行计量,这显然不能对电力进行有效的计量。

  (2)无表估算的计量方式。该方法对用户用电量的计算方式是从用户用电时间和用电设备的容量进行估算。而居民用电的连续性并不强,更没有高抚负荷率。这种方法的主观性太强,很容易造成人为的管理漏洞,对电力的计量准确性很低。

  (3)对电流互感器没有合理的使用。不合理的使用主要包括CT外接负载重和CT变比大两种。除了不合理的选择之外,低负荷的配变也是造成CT变比大的重要原因。由于CT选择电流的标准是配变额定二次电流,因此,CT的选择精确度高于运行精确度,当负荷率较低时,就容易造成电度表的误差。此外,由于一些计量点的引线过长而且引线的截面太小,造成较大的接触电阻,致使CT外接的负载较重。

  1.3没有对计量装置进行正确的安装

  接地线没有安装牢固,就会导致较大的接触电阻值,引起误差。如果计量点对计量设备的安装工艺不规范,造成电度表过大的倾斜,也会产生误差。当负荷率较低时误差也会随之增大。如果外界的温度和环境发生改变,就会引起电压、电流、制动磁通、相位角等因素的改变,温度附加误差增大,因此冬季的电力计量准确性较差。

  2如何提高电力计量的准确性

  2.1从电力计量的技术标准方面进行改善

  (1)研发并推广先进的电力计量技术,能够极大的改善电力计量不准确的情况。电力计量装置要对电能表、互感器和二次回路进行科学的选择,电能表的稳定性和精确度都必须达标,对于不符合国家相关标准的电能表要及时淘汰,并予以禁用。要引进先进的电力计量管理经验和先进技术,提高电力计量的技术水平,并建立符合实际的电力计量检测体系。电力企业要在相关部门的指导下,不断学习和引进新技术和新产品,不断对现有的电力计量工作进行改进,特别是要及时淘汰一表乘三和无表估算等落后的计量方法。

  (2)在运行管理中强化轮换和周检。要对电压电流互感器的合成误差进行管理,在二次负荷范围内可以对其进行准确度的控制。可以用误差补偿器和误差互补的办法来补偿计量综合误差,提高电力计量的准确性。

  2.2对计量选型定表进行综合分析

  (1)对动力电进行合理的计量,这就需要对动力和照明的电量进行合理计量,以防止表前窃电。对计量点进行合理的结构设计,最好将表闸和灯动进行分开计量。验收配变台要进行合理设计,互感器、动力电度表和熔丝、刀闸开关要隔开装置。表门钥匙由电力企业掌控,用户掌控刀闸开关钥匙。计量点要保持良好的密封,降低外界环境对计量精确度的影响。

  (2)正确的接线方式能够减少电力计量的误差。一组电流传感器不能同时具有电能表和二次设备。最好使用一组二次绕组的计量表,降低电压互感器的阻抗。要保障电能表的电流线有足够大的截面积,以免负载过重。

  2.3加强管理水平,实行标准化管理

  对电力的计量必须严格按照《计量法》,电力企业还要建立和完善各种相关制度,以制度来提高电力企业的电力计量水平和管理水平,加强各部门之间的岗位配合和衔接,做好动态管理,建立责任制度和奖惩制度。要对电力计量设备进行强制检验,现场对设备进行校验,对不合格的电能计量表坚决淘汰。电力企业要加强对计量人员的培训力度,提高计量人员的技术水平和整体素质,不断引进高素质的计量人才。要对计量人员进行标准化的管理,并定期为计量人员提供学习培训的机会,提高计量人员的计量水平,减少人为误差。

  3结语

电力电子技术论文范例篇4

  1.1电力电子器件

  电力电子器件主要是由一些半导体半控器件和全控器件组,主要有IGBT、BJT、MOSMOSFET、GTR等组成。成为了满足广大需求、适应复杂多变的恶劣自然天气、自然灾害,生产出质量高、性能好的电压和电流,要求电力电子器件具有可靠性高,抗干扰能力强,温度稳定性高并且有一定的电气隔离能力,能承受短暂的高电压强电流。电子器件所控制得智能电网应该有自愈性、安全性、交互性、经济性、优质高效、清洁环保市场化程度高。

  1.2在风力发电与太阳能发电中的应用

  太阳能发电系统由太阳能电池阵列、控制器、蓄电池、逆变器、用户即照明负载等组成。其中,太阳能电池组件和蓄电池为电源系统,控制器和逆变器为控制保护系统,负载为系统终端,在太阳能的利用上同样面临这类似的问题,光伏发电系统主要以电源方式并入电网,其输出系统的电力跟踪电网电压电流相位变化,同时调整输出电流幅值的大小,使光伏系统注入电网中的功率最大,为了弥补光伏发电系统在功率上的波动,还需要通过控制器对蓄电池的双向充放电,以保证向电网输送平稳的电压电流,和规定的相位,使电网得到纯净的高质量电力。

  1.3超高压直流输电技术在智能电网的应用

  超高压直流输电技术在远距离大容量输电、异步联网、海底电缆送电等方面具有优势,因而得到了广泛应用。而特高压直流输电更可以有效节省输电走廊,降低系统损耗,提高送电经济性,它为我国解决能源分布不均、优化资源配置提供了有效途径。截至2009年,我国已建成7个超高压直流输电工程和2个直流背靠背工程,直流输电线路总长度达7085km,输送容量近20GW,线路总长度和输送容量均居世界第一。预计到2020年,我国将建成“强交强直”的特高压混合电网和坚强的送、受端电网,预计直流工程达50项,其中规划建设30多个特高压工程,包括5个±1000kV的直流工程。

  1.4SVC在智能电网的应用

  SVC是一种比较典型的电力电子控制技术,在电网应用中发挥着重要作用,它具有许多作用,可以调节电力系统的电压从而保证其稳定,并通过控制无功潮流来增加系统输送点的能力,提供无功功率给直流换流器,提高电力系统的暂态稳定性和静态稳定性,还可以加强对电力系统低频振荡的阻尼。SVC技术是提高我国电力系统稳定性,解决电网输配电存在的不足之处的一个非常重要的技术,它具有优化潮流和无功补偿的功能,可以有效改善电网的电能质量,提高电网的稳定性、安全性和输电的能力、效率。

  1.5在电力分配上的作用

  电网应该能满足所有用户的要求,特别是国家电网应该不允许出现这样的缺陷,电网所面临的用户多种多样,包括了普通家庭,医院,工厂,城市照明等,当电力通过电网输送到用户的面前时,还需要电网根据不同客户的要求输出合适的频率、幅值、相位,在面临雷击、短路、及自然灾害的情况下应该任然能维持电网的平衡稳定,积极满足用户的需求。如今。城市用电迅速增长,原来的架空电网的供应已经不能满足用户的需求,在交流的长距离出送中,需要添加电力电子设备,对电网缺失进行补充,增加电力电子设备环节对供电系统起着越来越重要的的作用。

  2.小结

电力电子技术论文范例篇5

  应用最近几年,我国经济水平的提高促使电力系统获得了较快的发展。电工电子技术在电力系统中的广泛应用,能够为其提供更多的推动力。电工电子技术在电力系统发电中的应用能够保证发电系统为其提供稳定、功率适用的电源。

  1.1电工电子技术对静止励磁的控制

  电力系统中的发电部分对电工电子技术的应用最主要是体现在大型发电机的静止励磁的控制。对静止励磁的有效控制,能够促使发电输送稳定的电源。如,在非火力发电中,通过对变频电源转自励磁的频率进行调整,促使发电系统的最大功率在一定范围内。这样就可以保证发电系统具备较强的控制能力。同时,在传统的火力发电系统中,应用电工电子技术针对风机水泵耗电量大的问题采用变频调速装置进行调整,提高发电的效率。

  1.2电工电子技术对发电频率的控制

  在输送电能的过程中,如果电力公司应用水力进行发电,其中水流速度以及水源头的压力都是影响发电频率的重要因素。并且这些因素都是人为所不能控制的。但是在电力系统输送电能的过程中需要保持稳定的发电频率。在尚未应用电工电子技术之前,这始终是困扰电力公司有效输送电能的一个难题。但是应用电工电子技术就能够有效解决此项问题。应用电工电子技术就可以运用一些其他的非火力发电。如,可以采用风力发电和太阳能发电。电工电子技术是电力系统应用新能源进行发电的主要技术。

  1.3能源转换对电工电子技术的应用

  太阳能、风能的使用与发展,促使我国电力资源进一步扩充。同时,新能源都属于清洁型的能源。无论是太阳能还是风能在电力资源发展中具有较广阔的发展前景。但是,新能源在使用的过程中,应用电工电子技术就能够解决新能源在发电系统中能源转换的问题。太阳能和风能转化需要较大的功率。通过电工电子技术就能够将风能和太阳稳定、有效的输出去。

  2.电工电子技术在电力系统输电中的应用

  输电过程中运用电工电子技术能够体现出其重要的作用。电工电子技术在输电中的应用能够有效保证电能运输的稳定性与安全性。电工电子技术在输电中的应用主要体现在这么几点。

  2.1高压直流电中电工电子技术的应用

  直流输电技术能够获得广泛的应用,与晶闸管换流阀在电力系统中的应用具有紧密的联系。同时这也在一定程度上充分体现电力系统的快速发展。当前,全国各地电力系统将晶闸管进行广泛的应用,可以说是电力系统快速发展的一种体现。与此同时,电力输电系统正朝着易操作、易控制的方向不断发展。将电工电子技术应用于其中,使得该技术的应用领域进一步扩充。这样不仅有效的减少了直流转换变压器在输电中的使用,有效降低成本,同时还使得电流转换设备具有更强的移动性,设备使用的灵活性进一步增强。

  2.2静止无功补偿中电工电子技术的应用

  电工电子技术在输电系统中的重要应用表现在静止无功补偿方面。即使当前我国大多数电力系统并未采用这种输变电系统,但是有部分国家已经开始应用。将这种技术应用于其中有效的改变了传统电气开关,利用晶闸管作为全新的开关设备。有效准确、迅速的控制设备,提高电力输送的控制效果。这也充分体现电工电子技术在输电系统中的重要作用。

  3.电子电子技术在变负荷电动机中的应用

  在世界能源使用情况不允乐观的情况下,节能已经成为一项世界性的活动。针对此种情况,电力公司在输送电能的过程中应当更多的节约电能。如果电力公司要想更好、更多的节约电能,就应当从发电环节就开始节能。电力公司在为人们日常的生产生活提供稳定电能的过程中,电力系统自身也会消耗一定的能量。无论采用何种新型的发电模式,都是将其自身的能量转化为电能。电力系统在输送电能的过程中,可以通过这两方面进行考量。一方面是减少其他能源的消耗,促使能量最大限度的转化为电能;而另一方面则是电力系统在发电的过程中尽可能减少对自身造成的损害。节约能源无论从哪方面着手,就应当在负荷方面对转动的速度进行调整。这项技术要想使用的更为精准,其中就必须应用到电工电子技术。电工电子技术的应用能够取到良好的节能效果。

  4.结语

    热门推荐

    猜您感兴趣

    相关文章

    上一篇:捐款倡议书,捐款倡议书
    下一篇:生命在于运动演讲稿,生命在于运动
    

    Copyright © 2022-2024 www.juzici.com

    All right reserved. 猫宁早安 版权所有

    鲁ICP备15008254号

    返回顶部重选